Summary

ヒトにおける労作骨格筋損傷の誘導および評価

Published: December 11, 2016
doi:

Summary

This article describes a safe and reliable method to induce and quantify exertional skeletal muscle damage in human subjects.

Abstract

自主的な偏心(延長)の収縮を介した収縮誘発性筋損傷は、ヒトにおける筋肉の適応と回復を研究するための優れたモデルを提供しています。ここで我々は強さ、痛み、および血漿クレアチンキナーゼレベルの変化によってマーク大腿四頭筋、内損傷を誘導するために偏心運動プロトコルの設計を議論します。それは人間の参加者で実行され、結果の種間の変換を排除しているので、この方法は、単純な倫理的な、広く適用可能です。被験者は、の速度で膝伸筋の300最大の偏心収縮を行います 等速ダイナモメーター上で120°/秒。損傷の程度は、運動後数日間の強度損失、痛み、および血漿クレアチンキナーゼレベルの比較的非侵襲的な等速及び等角尺度を使用して測定可能です。したがって、その適用は、筋肉のための機構を同定する試みにおいて、特定の集団に向けることができます適応と再生。

Introduction

The overall goal of this procedure is to induce exertional damage to the quadriceps femoris muscles using voluntary lengthening (eccentric) contractions in human subjects.

Contraction-induced skeletal muscle damage is a common consequence of exercise that is marked by delayed onset muscle soreness1, transient strength loss, and elevated muscle-specific enzymes in the blood2. Exertional muscle damage is most pronounced following exercise to which the subject is unaccustomed, particularly when eccentric contractions are involved3. Exertional muscle damage is typically benign. Soreness subsides, and both serum proteins and strength typically return to pre-damage levels within a few days to weeks after the damaging insult. In extreme cases, exertional muscle damage can lead to a life-threatening syndrome know as rhabdomyolysis. However, exertional muscle damage is usually insufficient to cause clinical rhabdomyolysis in healthy individuals4 in the absence of compounding factors including heat stress, dehydration5, infection6 or rare genetic predispositions7.

Contraction-induced muscle damage is typically less severe than toxin-induced or freezing-induced injury, methods often used in rodent studies8,9. Yet, contraction-induced injury provides a useful method to study the muscle damage response with notable advantages. First, it is a safe and ethical method for use with human subjects1-3. Thus, interspecies translation of the results is not needed as data can be obtained directly from human subjects. Moreover, translating data obtained from rodent studies is very difficult given that the severity of injury seen in the rodent injury models exceeds the level of damage that would be ethical to induce in human subjects. Second, contraction-induced damage is commonly experienced and a natural process of exercise. Therefore, this mode of damage induction is useful for studying muscle damage in the context of exercise, adaptation to exercise as well as overt muscle injury. Here we describe a safe and reliable method to induce and evaluate skeletal muscle damage using lengthening contractions in humans.

Protocol

次の手順では、ブリガム・ヤング大学の制度審査委員会(IRB)の基準に準拠しています。 1.収縮プロトコルを準備します注:以下のプロトコル命令はBiodexアドバンテージソフトウェアに基づいています。ソフトウェアのナビゲートし、異なるシステムが使用されている場合ダイナモメータを操作することは異なることになります。 等速強度?…

Representative Results

ここで紹介する方法を使用して、ベースラインの痛み、血清クレアチンキナーゼ活性、および強度(等尺性および等速性)の測定値は、7訓練を受けていない若い男性に採取しました。次の日、被験者は、上述の伸張性収縮プロトコルに損傷を与える筋肉を施行しました。筋損傷の指標を提供するために、強度の評価をフォローアップし、痛みと血清クレアチンキナー…

Discussion

いくつかのステップは、このプロトコルの所望の結果を得るために重要です。まず、被験者は十分に収縮プロトコル、特に力の測定に精通する必要があります。被験者は、彼らが行うと、それらをデータ収集に先立って強度試験を練習する機会を与えることが期待されている正確に何を理解していることを確認してください。適切にこれらの手順に慣れていない被験者は、損傷の誘導後日間?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Biodex Dynomometer Biodex Medical Systems 850-000 Other models are available and should produce similar results
Creatine Kinase kit Sigma-Aldrich  MAK116
Serum Vacutainers BD Bioscience 367812
Winged safety push button blood collection set BD Bioscience 367338
Cryogenic vials Sigma-Aldrich  V5007 We use the 2mL vials to store serum aliquots

References

  1. Deyhle, M. R., et al. Skeletal Muscle Inflammation Following Repeated Bouts of Lengthening Contractions in Humans. Front. Physiol. 6, 424 (2015).
  2. Hyldahl, R. D., et al. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J. 29 (7), 2894-2904 (2015).
  3. Hyldahl, R. D., Olson, T., Welling, T., Groscost, L., Parcell, A. C. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front. Physiol. 5, 485 (2014).
  4. Clarkson, P. M., Kearns, A. K., Rouzier, P., Rubin, R., Thompson, P. D. Serum creatine kinase levels and renal function measures in exertional muscle damage. Med. Sci. Sports Exerc. 38 (4), 623-627 (2006).
  5. Clarkson, P. M. Exertional rhabdomyolysis and acute renal failure in marathon runners. Sports Med. 37 (4-5), 361-363 (2007).
  6. Seedat, Y. K., Aboo, N., Naicker, S., Parsoo, I. Acute renal failure in the "Comrades Marathon&#34 runners. Ren. Fail. 11 (4), 209-212 (1989).
  7. Landau, M. E., Kenney, K., Deuster, P., Campbell, W. Exertional rhabdomyolysis: a clinical review with a focus on genetic influences. J. Clin. Neuromuscul. Dis. 13 (3), 122-136 (2012).
  8. Warren, G. L., et al. Role of CC chemokines in skeletal muscle functional restoration after injury. Am. J. Physiol. Cell Physiol. 286 (5), C1031-C1036 (2004).
  9. Zhang, J., et al. CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. J. Immunol. 193 (10), 5149-5160 (2014).
  10. Cermak, N. M., Noseworthy, M. D., Bourgeois, J. M., Tarnopolsky, M. A., Gibala, M. J. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve. 46 (1), 42-50 (2012).
  11. Chen, Y. W., Hubal, M. J., Hoffman, E. P., Thompson, P. D., Clarkson, P. M. Molecular responses of human muscle to eccentric exercise. J. Appl. Physiol. 95 (6), 2485-2494 (2003).
  12. Stasinger, S. K., Di Lorenzo, M. S. . Phlebotomy Textbook. , 188-203 (2011).
  13. Hubal, M. J., Chen, T. C., Thompson, P. D., Clarkson, P. M. Inflammatory gene changes associated with the repeated-bout effect. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294 (5), R1628-R1637 (2008).
  14. Stupka, N., Tarnopolsky, M. A., Yardley, N. J., Phillips, S. M. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J. Appl. Physiol. 91 (4), 1669-1678 (2001).
  15. Smith, L. L., et al. Changes in serum cytokines after repeated bouts of downhill running. Appl. Physiol. Nutr. Metab. 32 (2), 233-240 (2007).
  16. Marqueste, T., Giannesini, B., Fur, Y. L., Cozzone, P. J., Bendahan, D. Comparative MRI analysis of T2 changes associated with single and repeated bouts of downhill running leading to eccentric-induced muscle damage. J. Appl. Physiol. 105 (1), 299-307 (2008).
  17. Crameri, R. M., et al. Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J. Physiol. 583 (Pt 1), 365-380 (2007).
  18. Yu, J. G., Malm, C., Thornell, L. E. Eccentric contractions leading to DOMS do not cause loss of desmin nor fibre necrosis in human muscle. Histochem. Cell Biol. 118 (1), 29-34 (2002).
  19. Jamurtas, A. Z., et al. Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. Eur. J. Appl. Physiol. 95 (2-3), 179-185 (2005).
check_url/54859?article_type=t

Play Video

Cite This Article
Deyhle, M. R., Sorensen, J. R., Hyldahl, R. D. Induction and Assessment of Exertional Skeletal Muscle Damage in Humans. J. Vis. Exp. (118), e54859, doi:10.3791/54859 (2016).

View Video