Summary

离子液体基电解质的合成,装配锂离子电池,并在高温性能的测量

Published: December 20, 2016
doi:

Summary

Here, we describe protocols to prepare phosphonium-based ionic liquid and lithium bis(trifluoromethane)sulfonimide salt electrolytes, and assemble a non-flammable and high temperature functioning lithium-ion coin cell battery.

Abstract

传统电解质的化学不稳定性仍然是广泛使用的能量存储设备,例如锂离子电池的安全问题。用于在升高的温度下工作的设备使用的锂离子电池要求热稳定的和不可燃的电解质。离子液体(离子液体),它们是不可燃的,非挥发性,热稳定的熔融盐,是今天目前使用易燃,低沸点有机溶剂的电解质的理想替代品。这里我们描述的程序:1)合成具有氯或双(三氟甲烷)磺酰亚胺(TFSI)阴离子配对单 – 和二 – 鏻离子液体; 2)测量通过差示扫描量热法(DSC)和热重分析(TGA)这些离子液体的热性能和稳定性; 3)测量由循环伏安(CV)的离子液体的电化学性能; 4)制备含锂双(三氟甲烷)磺酰胺电解质; 5)测量合作电解质作为温度的函数的nductivity; 6)装配有两个与锂金属阳极和钴酸锂正极2沿着电解质的纽扣电池;和7)评价在100℃下的电池性能。此外,我们还描述了从执行这些实验获得了执行中的挑战和洞察力。

Introduction

锂离子电池是一种将电能与化学能之间变换的能量,并提供一个方便的装置来存储和按需和在这去传递能量的设备。今天,锂离子电池支配便携式电子市场,因为它们的高能量密度和再充电能力,并且是用于大规模和专业应用,如井下钻孔和汽车的兴趣。 1-5电池是由四个主要部分组成:阴极,阳极,隔板和电解质。而在两电极的化学决定了电池的理论能量密度,安全性和工作温度主要由电解质材料的限制。基于6-9碳酸酯类有机溶剂的电解质( 例如 ,碳酸二甲酯(DMC)和碳酸亚乙酯(EC))被广泛应用于锂离子电池由于它们的低粘度,高导电性,高的锂盐的溶解度。此外,某些combina碳酸酯溶剂(DMC / EC)的系统蒸发散也形成稳定的固体电解质界面(SEI),从而防止了电解质和电极,并延长电池寿命之间的降解反应。然而,碳酸酯溶剂从低沸点和闪蒸点挨,限制的锂离子电池的工作温度,以在55℃以下,具有潜在的严重的安全问题时,有一个短路。 10,11

离子液体是一类的盐的具有低于100℃熔化温度。 12相反典型无机盐,离子液体具有宽液体范围,并且可以是在室温下为液体。离子液体由一个或多个有机阳离子中心,如咪唑鎓,鏻,吡啶鎓或铵中并用无机或有机阴离子配对,如甲磺酸盐,六氟磷酸盐,或卤化物。 13,14的各种各样的可能的阳离子和阴离子组合允许大量具有可调性质的组合物的。另外,离子液体中的强离子相互作用导致可忽略的蒸气压,不燃性,和高的热和电化学稳定性。 15,16

与离子液体代替传统的电解质是一个解决方案,在当前的锂离子电池解决了上述固有安全性的问题,并可以使高温应用。 17-27为了说明用于构建包含用于高温应用的离子液体的锂离子电池的一般合成和材料的加工方法,我们描述了合成,热特性,和与配对的单-和二-鏻离子液体的电化学特性任氯(Cl)的双(三氟甲烷)磺酰亚胺(TFSI)阴离子。不同浓度的双锂(三氟甲烷)磺酰亚胺的(的LiTFSI)随后被加入到鏻离子理趣IDS给电解质。基于所述鏻TFSI电解质与加入的LiTFSI相比氯化物类似物的性能,硬币电池被构造成具有与Li金属阳极和的LiCoO 2阴极沿任一或二鏻TFSI电解质。最后,电池性能在100℃下评价了两种不同的纽扣电池。从执行这些实验中获得的详细的程序,在执行中的挑战,并且见解进行说明。

Protocol

与氯化物(CL)和双(三氟甲烷)磺酰亚胺(TFSI)阴离子配对单和二磷离子液体的1.Synthesis 注:对于具有3己基和围绕所述鏻阳离子中有一个癸烷基链的单 – 鏻离子液体的步骤中描述的,这离子液体缩写为单HexC10Cl。相同的方法,用1,10-二氯癸烷,以获得高产率的二 – 鏻离子液体重复,并且这离子液体缩写为二 – HexC10Cl。 而在氩气氛下的手套箱中,称出使用玻璃吸管三?…

Representative Results

离子液体,单HexC10Cl和二HexC10Cl,分别经由亲核反应而制备,和随后卤化交换反应,得到单- HexC10TFSI和二HexC10TFSI离子液体,分别为( 图1A)。 14所有四种离子液体为无色,略粘性液体( 图1B)。单- HexC10TFSI离子液体的代表性1 H NMR示于图1C中 ,并用质谱和元素分析数据一起证实了结构。 <p class="jove_content" fo:keep-together…

Discussion

我们开发非易燃,高温功能的锂离子电池的方法包括新的离子液体电解质的原型纽扣电池的合成及后续评估。具体地,单HexC10TFSI和二HexC10TFSI基电解质中具有一个锂金属阳极和的LiCoO 2阴极的钮扣电池进行了测试。这种方法中的关键步骤是:1)根据一组设计规范确定的引线电解质; 2)保持干燥,并确保水不会进入细胞; 3)开发提供了一个工作电池单元组装过程。

由于?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This article was supported in part by BU and by the Advanced Energy Consortium:

Materials

Silicone oil Sigma-Aldrich 85409
Potassium hydroxide Sigma-Aldrich 221473 Corrosive
Rotary evaporator Buchi R-124
High-vacuum pump Welch 8907
Nitrogen, ultra high purity Airgas NI UHP300 Compressed gas
Tetrahydrofuran, stabilized with BHT Pharmaco-Aaper 346000 Flammable. Dried through column of XXX
Dichloromethane Pharmaco-Aaper 313000 Flammable, toxic.
Separatory funnel (1 L) Fisher Scientific 13-678-606
Sodium sulfate Sigma-Aldrich 239313
Ethanol, absolute Pharmaco-Aaper 111USP200 Flammable, toxic.
Buchner funnel Fisher Scientific FB-966-F
Methanol Pharmaco-Aaper 339000ACS Flammable, toxic.
Triethylamine (anhydrous) Sigma-Aldrich 471283 Toxic, flammable, harmful to environment
Glass syringe Hamilton Company 1700-series
Deuterated chloroform Cambridge Isotopes Laboratories, Inc. DLM-29-10 Toxic
Nuclear magnetic resonance instrument Varian V400
Hydrogen Airgas HY HP300 Highly flammable.
Hexanes Pharmaco-Aaper 359000ACS Toxic, flammable.
Differential scanning calorimeter TA Instruments Q100
N,N-dimethylformamide Sigma-Aldrich 227056 Toxic, flammable.
Trihexylphosphone TCI America Toxic, flammable.
1-Chlorodecane Sigma-Aldrich Toxic, flammable.
Bis(trifluoromethane)sulfonimide lithium salt Sigma-Aldrich Hydrophilic
1, 10-dichlorodecane Sigma-Aldrich Toxic, flammable.
Thermal Gravemetric Analysis (TGA) TA Q50 TA instruments
Differential scanning calorimeter (DSC) TA Q100 TA instruments
Controlled Strain Rheometer AR 1000 
Conductivity Meter  Consort K912 4-electrode cell
Potentiostate/Galvanostat Princeton Applied Research  VersaStat MC4  Electrochemical testing
Separators  Celgard  C480  polypropylene/polyethylene
CR2032 coin cells MTI Corp. EQ-CR2032-CASE
LiCoO2 electrode  MTI Corp. EQ-CR2032 Cathode material
lithium metal  Alfa Aesar 10769 Anode Material
Stainless Steel Spacer MTI Corp. EQ-CR20-Spacer304-02 15.5 mm Dia x 0.2 mm
Wave Spring MTI Corp. EQ-CR20WS-Spring304
Electric Coin Cell Crimping Machine MTI Corp. MSK-160D
Glove box Mbraun Water free, oxygen free operation

References

  1. Armand, M., Tarascon, J. -. M. Building better batteries. Nature (London). 451, 652-657 (2008).
  2. Linden, D., Reddy, T. B. . Handbook of batteries. , (2002).
  3. Scrosati, B., Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources. 195, 2419-2430 (2010).
  4. Goodenough, J. B., Park, K. -. S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 135, 1167-1176 (2013).
  5. Scrosati, B., Hassoun, J., Sun, Y. -. K. Lithium-ion batteries. A look into the future. Energ. Environ. Sci. 4, 3287-3295 (2011).
  6. Tarascon, J. -. M., Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature. 414, 359-367 (2001).
  7. Goodenough, J. B., Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 22, 587-603 (2010).
  8. Etacheri, V., Marom, R., Elazari, R., Salitraa, G., Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energ. Environ. Sci. 4, 3243-3262 (2011).
  9. Feng, X., et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources. 255, 294-301 (2014).
  10. Hammami, A., Raymond, N., Armand, M. Lithium-ion batteries: Runaway risk of forming toxic compounds. Nature. 424, 635-636 (2003).
  11. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303-4417 (2004).
  12. Ohno, H. . Electrochemical Aspects of Ionic Liquids. , (2005).
  13. Wasserscheid, P., Welton, T. . Ionic Liquids in Synthesis. , (2003).
  14. Wathier, M., Grinstaff, M. W. Synthesis and properties of supramolecular ionic networks. Journal of the American Chemical Society. 130, 9648-9649 (2008).
  15. Gebresilassie Eshetu, G., Armand, M., Scrosati, B., Passerini, S. Energy storage materials synthesized from ionic liquids. Angew. Chem. Int. Ed. 53, 13342-13359 (2014).
  16. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621-629 (2009).
  17. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503-11618 (2014).
  18. Sakaebe, H., Matsumoto, H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI) – novel electrolyte base for Li battery. Electrochem. Commun. 5, 594-598 (2003).
  19. Paillard, E., et al. Electrochemical and Physicochemical Properties of PY14FSI-Based Electrolytes with LiFSI. J. Electrochem. Soc. 156, A891-A895 (2009).
  20. Tsunashima, K., Sugiya, M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun. 9, 2353-2358 (2007).
  21. Nakagawa, H., et al. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources. 174, 1021-1026 (2007).
  22. Fuller, J., Carlin, R. T., Osteryoung, R. A. The Room Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate: Electrochemical Couples and Physical Properties. J. Electrochem. Soc. 144, 3881-3886 (1997).
  23. Mun, J., et al. Electrochemical stability of bis(trifluoromethanesulfonyl)imide-based ionic liquids at elevated temperature as a solvent for a titanium oxide bronze electrode. J. Power Sources. 194, 1068-1074 (2009).
  24. Garcia, B., Lavallée, S., Perron, G., Michot, C., Armand, M. Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta. 49, 4583-4588 (2004).
  25. Lewandowski, A., Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. J. Power Sources. 194, 601-609 (2009).
  26. Galiński, M., Lewandowski, A., Stępniak, I. Ionic liquids as electrolytes. Electrochim. Acta. 51, 5567-5580 (2006).
  27. Lin, X., et al. Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius. Chem. Sci. 6, 6601-6606 (2015).
  28. Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 104, 4303-4418 (2004).
  29. Armand, M. Polymer solid electrolytes-an overview. Solid State Ionics. 9-10, 745-754 (1983).
  30. Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439-448 (1998).
check_url/54864?article_type=t

Play Video

Cite This Article
Lin, X., Chapman Varela, J., Grinstaff, M. W. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature. J. Vis. Exp. (118), e54864, doi:10.3791/54864 (2016).

View Video