Summary

一个模型来模拟人类临床相关性缺氧

Published: December 22, 2016
doi:

Summary

在人类缺氧模拟通常也被因吸入低氧气体混合物进行。在这项研究中,呼吸暂停潜水员被用来模拟人类动态缺氧。另外,在去饱和和再饱和动力学的生理变化与非侵入性工具,例如近红外光谱法(NIRS)和外围氧合饱和度( 血氧饱和度)来评价。

Abstract

In case of apnea, arterial partial pressure of oxygen (pO2) decreases, while partial pressure of carbon dioxide (pCO2) increases. To avoid damage to hypoxia sensitive organs such as the brain, compensatory circulatory mechanisms help to maintain an adequate oxygen supply. This is mainly achieved by increased cerebral blood flow. Intermittent hypoxia is a commonly seen phenomenon in patients with obstructive sleep apnea. Acute airway obstruction can also result in hypoxia and hypercapnia. Until now, no adequate model has been established to simulate these dynamics in humans. Previous investigations focusing on human hypoxia used inhaled hypoxic gas mixtures. However, the resulting hypoxia was combined with hyperventilation and is therefore more representative of high altitude environments than of apnea. Furthermore, the transferability of previously performed animal experiments to humans is limited and the pathophysiological background of apnea induced physiological changes is poorly understood. In this study, healthy human apneic divers were utilized to mimic clinically relevant hypoxia and hypercapnia during apnea. Additionally, pulse-oximetry and Near Infrared Spectroscopy (NIRS) were used to evaluate changes in cerebral and peripheral oxygen saturation before, during, and after apnea.

Introduction

临床相关的急性缺氧和高碳酸血症伴大多见于阻塞性睡眠呼吸暂停综合征(OSAS),急性呼吸道阻塞或心肺复苏过程中。在OSAS等低氧条件的领域主要局限包括有关动物研究的病理生理学和人体模型是不存在1有限转让知识。模仿人体缺氧,缺氧的气体混合物迄今已使用2 7。然而,这些条件都比较有代表性的高海拔环境比,其中缺氧,在一般情况下,伴随的高碳酸血症的临床情况的。为了监测心脏骤停和复苏过程中的组织氧合,动物研究已经完成8探讨生理代偿机制。

窒息潜水员能够压低呼吸冲动运动员健康是受低动脉血氧饱和度9和增加的pCO 2 10,11诱发。我们以模仿急性缺氧和高碳酸血症相伴12临床情况调查呼吸暂停潜水员。该模型可用于评价临床设置,提高患者的OSAS或病理呼吸病症的病理生理学的了解,并揭示了新的可能性在呼吸暂停的情况下,研究的潜在计数器平衡机制。此外,不同的技术来检测缺氧人类可以在动态缺氧的情况下,可行性和准确性被测试存在于紧急情况下( ,气道阻塞,喉或无法插管,可以不透风的情况),或者以模拟在患者间歇性缺氧OSAS患者。

非侵入性的技术来检测缺氧在人中是有限的。外围脉搏血氧饱和度(SPO 2)预好客的认可工具TAL和医院设置,检测缺氧13。该方法是基于血红蛋白的光吸收。然而, 血氧饱和度测量被限制为外周动脉氧合并且不能在无脉性电活动(PEA)或集中最小循环14的情况下使用。与此相反,近红外光谱法可用于在实时的PEA中出血性休克或蛛网膜下腔出血15中,以评估脑组织氧饱和度(RSO 2), 19。它的使用在不断增加20和方法论研究显示血氧饱和度和RSO 2 3,4之间的正相关关系。

在这项研究中,我们提供了一个模型来模拟人类的临床相关缺氧并给出了一个一步一步的方法来比较外围脉搏血氧饱和度和NIRS在德和再饱和的情况下。通过在的情况下进行分析生理数据pnea,我们的反平衡机制的认识得以提高。

Protocol

道德守则 在涉及人类受试者的研究进行的所有程序均符合1964年赫尔辛基宣言的道德标准和其后来的修正。这项研究的设计得到了德国波恩大学医院的伦理委员会。 注:请确保受试者处于良好的健康状态,不含任何抗高血压药物和至少24小时的免费如咖啡因或等于物质儿茶酚胺诱导剂。 1.被检者的制备清洁用70%酒精前额皮肤脱脂前NIRS电极定位在皮肤上。 <…

Representative Results

图1显示血氧饱和度和NIRS值(NIRS 脑和NIRS 组织 )的同步录音暂停期间,一个病人。总的呼吸暂停时间为363秒。继呼吸暂停NIRS和血氧饱和度值约140秒保持稳定。通过外围血氧饱和度,而238秒后,被检出脑近红外光谱的减少204秒后,检测血氧饱和度的下降。最小测量血氧饱和度以下呼吸暂停为58?…

Discussion

总呼吸暂停时间主要是由肺尺寸和每分钟的氧气消耗,并通过一个个人承受造成增加的pCO 2或减小PO 2的呼吸反射能力的影响。呼吸暂停潜水员培训,以最大限度地发挥他们的屏气时间,用于在最大吸气这样做。因此,时间直到缺氧是个体之间可检测的不同,并取决于受试者的身体状况和训练状态,甚至可能通过他们的日常状态和意愿而改变承受呼吸反射。可以通过协议步骤的详细…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Special thanks to all volunteers who participated in the original study. The work of L. Eichhorn was supported through a scholarship of the Else-Kröner-Fresenius Foundation. The authors would like to thank Springer, Part of Springer Science+Business Media, for copyright clearance (License Number 3894660871180) and the kind permission of reusing previously published data.

Materials

SpO2 Dräger Medical AG&CO.KG SHP ACC MCABLE-Masimo Set peripheral SpO2-Monitoring
Non Invasive Blood Pressure (NIBP) Dräger Medical AG&CO.KG NIBP cuff M+,  MP00916 
Electrocardiographic (ECG)   Dräger Medical AG&CO.KG Infinity M540 Monitor ECG monitoring
Docking station Dräger Medical AG&CO.KG M500 Docking Station connection of M540 to laptop
NIRS NONIN Medical’s EQUANOX Model 7600 Regional Oximeter System measuring of cerebral and  tissue oxygenation
NIRS diodes EQUANOX Advance Sensor Model 8004CA suited for measuring cerebral and somatic oxygen-saturation
Laptop 
DataGrabber Dräger Medical AG&CO.KG DataGrabber v2005.10.16 software to synchronize M540 with laptop
eVision Nonin Medical. Inc. Version 1.3.0.0 software to synchronize NONIN with laptop

References

  1. Drager, L. F., Polotsky, V. Y., O’Donnell, C. P., Cravo, S. L., Lorenzi-Filho, G., Machado, B. H. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 309 (7), 1101-1111 (2015).
  2. Shah, N., Trivedi, N. K., Clack, S. L., Shah, M., Shah, P. P., Barker, S. Impact of hypoxemia on the performance of cerebral oximeter in volunteer subjects. J Neurosurg Anesthesiol. 12 (3), 201-209 (2000).
  3. Ricci, M., Lombardi, P., et al. Near-infrared spectroscopy to monitor cerebral oxygen saturation in single-ventricle physiology. J Thorac Cardiovasc Surg. 131 (2), 395-402 (2006).
  4. Kusaka, T., Isobe, K., et al. Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method. Comp Biochem Physiol A Mol Integr Physiol. 132 (1), 121-132 (2002).
  5. Nishimura, N., Iwasaki, K., Ogawa, Y., Shibata, S. Oxygen administration, cerebral blood flow velocity, and dynamic cerebral autoregulation. Aviat Space Environ Med. 78 (12), 1121-1127 (2007).
  6. Wilson, M. H., Newman, S., Imray, C. H. The cerebral effects of ascent to high altitudes. Lancet Neurol. 8 (2), 175-191 (2009).
  7. Sanborn, M. R., Edsell, M. E., et al. Cerebral hemodynamics at altitude: effects of hyperventilation and acclimatization on cerebral blood flow and oxygenation. Wilderness Environ Med. 26 (2), 133-141 (2015).
  8. Reynolds, J. C., Salcido, D., et al. Tissue oximetry by near-infrared spectroscopy in a porcine model of out-of-hospital cardiac arrest and resuscitation. Resuscitation. 84 (6), 843-847 (2013).
  9. Andersson, J. P. A., Evaggelidis, L. Arterial oxygen saturation and diving response during dynamic apneas in breath-hold divers. Scand J Med Sci Sports. 19 (1), 87-91 (2009).
  10. Overgaard, K., Friis, S., Pedersen, R. B., Lykkeboe, G. Influence of lung volume, glossopharyngeal inhalation and P(ET) O2 and P(ET) CO2 on apnea performance in trained breath-hold divers. Eur J Appl Physiol. 97 (2), 158-164 (2006).
  11. Ferretti, G. Extreme human breath-hold diving. Eur J Appl Physiol. 84 (4), 254-271 (2001).
  12. Eichhorn, L., Erdfelder, F., et al. Evaluation of near-infrared spectroscopy under apnea-dependent hypoxia in humans. J Clin Monit Comput. 29 (6), 749-757 (2015).
  13. Eichhorn, J. H. Pulse oximetry as a standard of practice in anesthesia. Anesthesiology. 78 (3), 423-426 (1993).
  14. Schewe, J. -. C., Thudium, M. O., et al. Monitoring of cerebral oxygen saturation during resuscitation in out-of-hospital cardiac arrest: a feasibility study in a physician staffed emergency medical system. Scand J Trauma Resusc Emerg Med. 22, 58 (2014).
  15. Ahn, A., Nasir, A., Malik, H., D’Orazi, F., Parnia, S. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation. 84 (12), 1713-1716 (2013).
  16. Moritz, S., Kasprzak, P., Arlt, M., Taeger, K., Metz, C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 107 (4), 563-569 (2007).
  17. Beilman, G. J., Groehler, K. E., Lazaron, V., Ortner, J. P. Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock. Shock. 12 (3), 196-200 (1999).
  18. Rhee, P., Langdale, L., Mock, C., Gentilello, L. M. Near-infrared spectroscopy: continuous measurement of cytochrome oxidation during hemorrhagic shock. Crit Care Med. 25 (1), 166-170 (1997).
  19. Zweifel, C., Castellani, G., et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke. 41 (9), 1963-1968 (2010).
  20. Scheeren, T. W. L., Schober, P., Schwarte, L. A. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput. 26 (4), 279-287 (2012).
  21. Boushel, R., Langberg, H., Olesen, J., Gonzales-Alonzo, J., Bülow, J., Kjaer, M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports. 11 (4), 213-222 (2001).
  22. Aaslid, R. Cerebral autoregulation and vasomotor reactivity. Front Neurol Neurosci. 21, 216-228 (2006).
  23. Palada, I., Obad, A., Bakovic, D., Valic, Z., Ivancev, V., Dujic, Z. Cerebral and peripheral hemodynamics and oxygenation during maximal dry breath-holds. Respir Physiol Neurobiol. 157 (2-3), 374-381 (2007).
  24. Heusser, K., Dzamonja, G., et al. Cardiovascular regulation during apnea in elite divers. Hypertension. 53 (4), 719-724 (2009).
  25. Joulia, F., Lemaitre, F., Fontanari, P., Mille, M. L., Barthelemy, P. Circulatory effects of apnoea in elite breath-hold divers. Acta Physiol (Oxf). 197 (1), 75-82 (2009).
  26. Costalat, G., Coquart, J., Castres, I., Tourny, C., Lemaitre, F. Hemodynamic adjustments during breath-holding in trained divers. Eur J Appl Physiol. 113 (10), 2523-2529 (2013).
  27. Busch, D. R., Lynch, J. M., et al. Cerebral Blood Flow Response to Hypercapnia in Children with Obstructive Sleep Apnea Syndrome. Sleep. 39 (1), 209-216 (2016).
  28. Alex, R., Bhave, G., et al. An investigation of simultaneous variations in cerebral blood flow velocity and arterial blood pressure during sleep apnea. Conf Proc IEEE Eng Med Biol Soc. , 5634-5637 (2012).
  29. Eichhorn, L., Erdfelder, F., et al. Influence of Apnea-induced Hypoxia on Catecholamine Release and Cardiovascular Dynamics. Int J Sports Med. , (2016).
check_url/54933?article_type=t

Play Video

Cite This Article
Eichhorn, L., Kessler, F., Böhnert, V., Erdfelder, F., Reckendorf, A., Meyer, R., Ellerkmann, R. K. A Model to Simulate Clinically Relevant Hypoxia in Humans. J. Vis. Exp. (118), e54933, doi:10.3791/54933 (2016).

View Video