Summary

对于战略的新变化集移在大鼠

Published: January 23, 2017
doi:

Summary

设置转移,行为灵活性的形式,要求从一维刺激到另一个注意力转移。我们扩展了一个既定的啮齿动物设置移通过根据上下文需要注意对不同刺激的任务1。该任务的具体病变相结合,以确定神经元亚型的顺利转型底层。

Abstract

行为的灵活性是在不断变化的环境中生存的关键。从广义上讲,行为灵活性要求行为策略的基础上,管限规则变化的转变。我们描述的策略设置移,需要从一个刺激维到另一种注意力转移任务。范式通常用于在灵长类测试认知灵活性。然而,啮齿动物的版本还没有被广泛地作为开发。我们最近通过根据上下文需要注意不同的刺激延伸在大鼠1一套既定移任务。所需的所有实验条件的动物来选择左或右杠杆。最初,所有动物具有到杆的位置的基础上进行选择。随后,在规则的变化发生,这需要在一组从基于位置的规则,其中正确的杠杆是由光线索所指示的规则的移位。我们对THRE性能比较Ë不同版本的任务,其中,所述光刺激要么新颖,先前相关的,或先前不相关的。我们发现,特定的神经化学病灶选择性受损如通过在不同版本的任务的性能测定为使特定类型的组移位的能力。

Introduction

行为的灵活性是在不断变化的世界上生存的关键要求。一个用来测试这种能力既定的行为范式是集移,其中的注意力从一个刺激维度另一个转变是必需的规则改变后改变行动策略。几个脑区域,例如前额叶皮层和纹状体被牵连组移2,3,4,5。此功能的神经机制已经在多个物种(包括人)5,猴子6和大鼠1,7,8,9的影响。然而,集移任务大鼠版本尚未如广泛发展。大鼠的成本效益,其适当的尺寸为立体定向手术,以及最近开发的遗传方式10的可用性,激励为大鼠使用组移范例的进一步发展。

老鼠一组典型的移模式需要两个行为策略之间的变化:例如,应对策略和视觉线索的策略。大鼠最初要选择的两个选项(如在一个操作性自动版本1中的T迷宫版本7,8,9,11左或右杆或左或右臂)之一。一组移位后,他们必须切换到使用视觉提示的策略,如光提示,指示正确的一面。在那些传统的集移的任务,它需要从一个刺激维转移注意力到已经预先不相干另一个方面。

内容】“>除了改变到已经预先不相干的尺寸,也有逻辑可能性刺激以前相关的,或先前不存在,并且现在新的。在自然界中实际生活中的情况下可能需要注意的新的,或从历史相关但不关键线索。因此,我们认为设置移位这些亚型,在啮齿动物的一个新的变化设定换档基于先前建立的自动化组移任务1。

我们最近证明在实验中使用的设定模式发生变化的新版本,以确定纹状体12的神经化学特定病变的效果。在我们以前的研究中,我们有针对性的interneurons胆碱释放背内侧或腹侧纹状体的乙酰胆碱乙酰胆碱以来和这些次区域已经在行为的灵活性受到牵连。所有的实验条件要求相同的战略转移BUt分别参与不同类型的注意力转变:一种新的,以前相关或不相关的先前暗示。我们在这里描述的范式的详细程序,突出代表性的结果表明纹状体胆碱能系统在设定的转移,这是根据行为背景12个不同纹状体分区域之间的可分离的基础性作用。

Protocol

使用动物的所有的程序是由动物护理和使用委员会在科学和技术研究所冲绳批准。 1.动物获得男Long-Evans大鼠(250-300克,以到达)。 抵达后,房子一组两个或三个老鼠在一起一个星期,后来他们分成单独的笼子里。请注意,这个实验设计涉及到食品的限制,需要在每个网箱控制消耗的食物保存的动物。 提供食物和水随意所有动物,并在标准条件下…

Representative Results

我们所使用的策略设置移上述调查的interneurons胆碱的行为灵活性的角色任务。我们比较了在背内侧(DMS)的interneurons胆碱的免疫诱导选择性病变的任务的影响,腹侧纹状体(VS)和生理盐水注射的对照。所有动物不得不从选择的基础上侧的杆(左或右),切换到选择的基础上正确的杠杆上方的线索的光。我们使用设置移,其中,球杆光要么的三个实验条件:(1)新的,(2)预先相关(指示正确杆…

Discussion

我们开发对大鼠使用一套既定移范式的新变化。利用这些范式,发现纹状体的胆碱能神经病变损害设定移,提示设置转移纹状体胆碱能的interneurons的一个特定的角色:一个新的规则抑制的旧规则和探索的便利。的影响背内侧和腹侧纹状体之间不同,根据这些结构中学习的不同的作用。

一组移任务已被广泛地用于测试物种从人类啮齿类<sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study was supported by Human Frontier Science Program and the Sasakawa Scientific Research Grant from the Japan Science Society.

Materials

Standard Modular Test Chamber Med Associates ENV-008
Low Profile Retractable Response Lever Med Associates ENV-112CM
Stimulus Light for Rat Med Associates ENV-221M
Switchable Dual Pellet/Dipper Receptacle for Rat Med Associates ENV-202RM-S
Head Entry Detector for Rat Receptacles Med Associates ENV-254-CB
Modular Pellet Dispenser; 45 mg for Rat Med Associates ENV-203M-45
Sonalert Module for Rat Med Associates ENV-223AM 4.5 kHz available (ENV-223HAM)
House Light for Rat Chambers Med Associates ENV-215M
SmartCtrl Interface Module, 8 input/16 output Med Associates DIG-716B
SmartCtrl Connection Panel, 8 input/16 output Med Associates SG-716B
45 mg Tablet-Fruit Punch TestDiet 1811255 Several flavors available

References

  1. Floresco, S. B., Block, A. E., Tse, M. T. L. Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behavioural Brain Research. 190, 85-96 (2008).
  2. Nicolle, M. M., Baxter, M. G. Glutamate receptor binding in the frontal cortex and dorsal striatum of aged rats with impaired attentional set-shifting. European Journal of Neuroscience. 18, 3335-3342 (2003).
  3. Ragozzino, M. E., Ragozzino, K. E., Mizumori, S. J. Y., Kesner, R. P. Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behavioral Neuroscience. 116, 105-115 (2002).
  4. Dias, R., Robbins, T. W., Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature. 380, 69-72 (1996).
  5. Monchi, O., Petrides, M., Petre, V., Worsley, K., Dagher, A. Wisconsin Card Sorting Revisited: Distinct Neural Circuits Participating in Different Stages of the Task Identified by Event-Related Functional Magnetic Resonance Imaging. The Journal of Neuroscience. 21, 7733-7741 (2001).
  6. Dias, R., Robbins, T. W., Roberts, A. C. Dissociable Forms of Inhibitory Control within Prefrontal Cortex with an Analog of the Wisconsin Card Sort Test: Restriction to Novel Situations and Independence from "On-Line" Processing. The Journal of Neuroscience. 17, 9285-9297 (1997).
  7. Floresco, S. B., Ghods-Sharifi, S., Vexelman, C., Magyar, O. Dissociable Roles for the Nucleus Accumbens Core and Shell in Regulating Set Shifting. The Journal of Neuroscience. 26, 2449-2457 (2006).
  8. Ragozzino, M. E., Detrick, S., Kesner, R. P. Involvement of the Prelimbic-Infralimbic Areas of the Rodent Prefrontal Cortex in Behavioral Flexibility for Place and Response Learning. The Journal of Neuroscience. 19, 4585-4594 (1999).
  9. Ragozzino, M. E., Jih, J., Tzavos, A. Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Research. 953, 205-214 (2002).
  10. Witten, I. B., et al. Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement. Neuron. 72, 721-733 (2011).
  11. Floresco, S. B., Magyar, O., Ghods-Sharifi, S., Vexelman, C., Tse, M. T. L. Multiple Dopamine Receptor Subtypes in the Medial Prefrontal Cortex of the Rat Regulate Set-Shifting. Neuropsychopharmacology. 31, 297-309 (2006).
  12. Aoki, S., Liu, A. W., Zucca, A., Zucca, S., Wickens, J. R. Role of Striatal Cholinergic Interneurons in Set-Shifting in the Rat. The Journal of Neuroscience. 35, 9424-9431 (2015).
  13. Dias, R., Aggleton, J. P. Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching- and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility. European Journal of Neuroscience. 12, 4457-4466 (2000).
  14. Hunt, P. R., Aggleton, J. P. Neurotoxic Lesions of the Dorsomedial Thalamus Impair the Acquisition But Not the Performance of Delayed Matching to Place by Rats: a Deficit in Shifting Response Rules. The Journal of Neuroscience. 18, 10045-10052 (1998).
  15. Jones, B., Mishkin, M. Limbic lesions and the problem of stimulus-Reinforcement associations. Experimental Neurology. 36, 362-377 (1972).
  16. Chen, K. C., Baxter, M. G., Rodefer, J. S. Central blockade of muscarinic cholinergic receptors disrupts affective and attentional set-shifting. European Journal of Neuroscience. 20, 1081-1088 (2004).
  17. Bradfield, L. A., Bertran-Gonzalez, J., Chieng, B., Balleine, B. W. The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron. 79, 153-166 (2013).
  18. Okada, K., et al. Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons. Nat Commun. 5, (2014).
  19. Ragozzino, M. E. Acetylcholine actions in the dorsomedial striatum support the flexible shifting of response patterns. Neurobiology of Learning and Memory. 80, 257-267 (2003).
  20. Ravizza, S. M., Carter, C. S. Shifting set about task switching: Behavioral and neural evidence for distinct forms of cognitive flexibility. Neuropsychologia. 46, 2924-2935 (2008).
  21. Rushworth, M. F. S., Hadland, K. A., Paus, T., Sipila, P. K. Role of the Human Medial Frontal Cortex in Task Switching: A Combined fMRI and TMS Study. Journal of Neurophysiology. 87, 2577-2592 (2002).
  22. Bissonette, G. B., Roesch, M. R. Rule encoding in dorsal striatum impacts action selection. European Journal of Neuroscience. 42, 2555-2567 (2015).
check_url/55005?article_type=t

Play Video

Cite This Article
Aoki, S., Liu, A. W., Zucca, A., Zucca, S., Wickens, J. R. New Variations for Strategy Set-shifting in the Rat. J. Vis. Exp. (119), e55005, doi:10.3791/55005 (2017).

View Video