Summary

使用人类流感病毒感染的斑马鱼模型到屏幕抗病毒药物和表征宿主免疫细胞反应

Published: January 20, 2017
doi:

Summary

Systemic and localized zebrafish infection models for human influenza A virus are demonstrated. Using a systemic infection model, zebrafish can be used to screen antiviral drugs. Using a localized infection model, zebrafish can be used to characterize host immune cell responses.

Abstract

Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here exploit these advantages and have the potential to reveal critical insights into host-IAV interactions that may ultimately translate into the clinic.

Introduction

据世界卫生组织(WHO),流感病毒感染的成年人的5%-10%,每年儿童的20-30%,并导致300万-500万严重病例和全世界1到500,000人死亡。对流感疫苗接种每年仍然以防止疾病的最佳选择。像世卫组织全球行动计划的努力,以降低发病率和季节性流感暴发2相关的死亡率增加了季节性流感疫苗的使用,疫苗生产能力,以及研究和开发更有效的疫苗策略。抗病毒药物像神经氨酸酶抑制剂( 例如 ,扎那米韦和奥司他韦)是在一些国家可用以及缓解症状已被证明有效,当发病3,4,5的第一48小时内给药。尽管全球努力,季节性流感遏制欧tbreaks保持此时一个严峻的挑战,因为流感病毒抗原漂移往往超过适应病毒6的改变基因组中的电流的能力。疫苗策略靶向病毒的新菌株必须提前开发,有时由于在类型菌株,在一个流感季节最终占优势不可预见的变化呈现小于最佳效果。由于这些原因,有一个明确需要制定包含感染和死亡率降低替代治疗策略。通过实现更好的理解在主机病毒相互作用,有可能开发新的抗流感药物和辅助疗法7,8。

人宿主A型流感病毒(IAV)相互作用是复杂的。人类IAV感染的几种动物模型为了深入了解宿主病毒相互作用,大型的源码已经开发ING小鼠,豚鼠,棉鼠,仓鼠,雪貂,猕猴和9。同时提供具有增强宿主IAV动力学的理解的重要数据,每个模式生物拥有必须尝试将结果转化为人类医学时,应考虑显著的缺点。例如,小鼠,这是最广泛使用的模型,不容易与人流感分离株9感染时开发IAV诱导感染症状。这是因为小鼠缺乏对人流感的天然趋向性分离自小鼠上皮细胞表达α-2,3-唾液酸连接,而不是对人上皮细胞10表示的α-2,6唾液酸连接。存在于人类IAV的血凝素蛋白的分离从优结合并进入宿主细胞到通过受体介导的内吞作用9,11α-2,6唾液酸连接 </s达> 12,13。因此,现在已被接受,在发育的小鼠模型的人流感,必须小心,以与流感的适当应变配对鼠标的适当应变,以达到疾病表型概括的人类疾病的各个方面。与此相反,在雪貂的上呼吸道上皮细胞具有类似于人类细胞14α-2,6唾液酸连接。感染雪貂共享许多在人类疾病中观察到的病理和临床特征,包括人类和禽流感病毒14的致病性和透射性,15。它们也是高度适合于疫苗功效试验。然而,对于人类流感鼬模型有几个缺点,主要与它们的大小和饲养成本,使统计上显的收购具有挑战性着数据。此外,雪貂以前已经显示在药代动力学,生物利用度和毒性,使测试功效很难区别。例如,雪貂表现出毒性M2离子通道抑制剂金刚烷胺16。因此,很显然,在选择的动物模型来研究有关人类IAV感染的问题,必须考虑其固有的优点和局限性,并在主机病毒相互作用是受调查的方面是非常重要的。

斑马鱼, 斑马鱼是动物模型,提供了独特的机会,研究微生物感染,宿主免疫反应,和潜在的药物治疗17,18,19,20,21,22,23,<SUP类=“外部参照”> 24,25,26,27,28。 α-2,6-连接的唾液酸在斑马鱼细胞的表面上存在表明其易感性IAV,其在感染的研究证明了,用IAV 19的荧光报道菌株在体内成像。在IAV感染斑马鱼,抗病毒ifnphi1MXA转录物的表达增加表明先天免疫应答已经刺激,并通过IAV感染斑马鱼,包括水肿和组织破坏显示的病理,是类似于在人类流感感染观察。此外,IAV抗病毒药神经氨酸酶抑制剂扎那米韦有限死亡率和在斑马鱼19减少病毒复制。

在这份报告中,对于引发体系协议在斑马鱼胚胎IC IAV感染描述。使用扎那米韦临床相应剂量的作为证明的原则,对于抗病毒活性的化合物筛选斑马鱼这种IAV感染模型的效用是证明。此外,用于产生局部的,上皮IAV感染在斑马鱼的协议鱼鳔,被认为是在解剖学和功能上类似于哺乳动物的肺21,29,30,31之间一个器官,进行说明。使用这种局部IAV感染模型,中性粒细胞募集至感染部位可以跟踪,使调查中性粒细胞生物学在IAV感染和炎症中的作用。这些斑马鱼模型补充人类IAV感染的现有的动物模型,并且用于测试的小分子和由于增强了S的可能性免疫细胞应答特别有用tatistical功率,容量为中到高通量测定法,和能力来跟踪免疫细胞的行为和功能的光显微镜。

Protocol

所有工作都应该使用生物安全2级(BSL2或)由美国疾病控制中心(CDC),并按照机构动物护理和使用委员会(IACUC)制定的指令所描述的标准来执行。请有关官员商议,以确保安全和法规遵从。 1.斑马鱼保养与维护斑马鱼产卵,并收集所需数量的胚胎实验。必要时,大规模繁殖罐,像那些由Adatto 等人描述。 32,可用于收集大量的发育上?…

Representative Results

这里,提供了示出如何全身IAV感染在斑马鱼可用于测试药物功效( 图1A)的数据。在48小时后的受精胚胎经由居维叶的导管与APR8( 图1C,1F)中,X-31( 图1D,1G),或NS1-GFP( 图1 H-1I)注入以引发病毒感染。在48小时后的受精胚胎另一个队列注射,作为病毒感染( 图1B,1E)控制。通过48小时后感染,斑马鱼注?…

Discussion

为了最大限度地使用小动物到人类宿主 – 病原体相互作用的模型获得的利益,框架研究问题,并在测试假说,关于模型系统的固有优势利用是很重要的。作为人类IAV感染模型,斑马鱼有几个优势,包括高繁殖力,光学清晰度,顺从于药物筛选,以及该标签的免疫细胞嗜中性粒细胞一样的转基因株系的可用性。斑马鱼已经发展成为日益强大的替代鼠标模型系统的炎症和先天免疫方面的研究。因为他?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors wish to thank Mark Nilan for zebrafish care and maintenance and Meghan Breitbach and Deborah Bouchard for propagating NS1-GFP and determining IAV titers. This research was supported by NIGMS grant NIH P20GM103534 and the Maine Agricultural and Forest Experiment Station (Publication Number 3493).

Materials

Instant Ocean Spectrum Brands SS15-10
100 x 25 mm sterile disposable Petri dishes  VWR  89107-632
Transfer pipettes  Fisherbrand 13-711-7M
Tricaine- S (MS-222) Western Chemical
Borosilicate glass capillary with filament  Sutter Instrument  BF120-69-10
Flaming/Brown micropipette puller  Sutter Instrument  P-97
Agarose Lonza 50004
Zanamivir AK Scientific G939
Dumont #5 forceps  Electron Microscopy Sciences 72700-D
Microloader tips Eppendorf 930001007
Microscope immersion oil Olympus IMMOIL-F30CC
Microscope stage calibration slide  AmScope MR095
MPPI-3 pressure injector  Applied Scientific Instrumentation
Stereo microscope Olympus SZ61
Back pressure unit Applied Scientific Instrumentation BPU
Micropipette holder kit Applied Scientific Instrumentation MPIP
Foot switch Applied Scientific Instrumentation FSW
Micromanipulator Applied Scientific Instrumentation MM33
Magnetic base Applied Scientific Instrumentation Magnetic Base
Phenol red  Sigma-Aldrich  P-4758
Low temperature incubator VWR 2020
SteREO Discovery.V12 Zeiss
Illuminator Zeiss HXP 200C
Cold light source Zeiss  CL6000 LED
Glass-bottom multiwell plate, 24 well Mattek P24G-0-13-F
Confocal microscope Olympus IX-81 with FV-1000 laser scanning confocal system
Fluoview software Olympus
Prism v6 GraphPad
Influenza A/PR/8/34 (H1N1) virus  Charles River  490710
Influenza A X-31, A/Aichi/68 (H3N2)  Charles River  490715
Influenza NS1-GFP Referenced in Manicassamy et al. 2010
Tg(mpx:mCherry) Referenced in Lam et al. 2013

References

  1. De Clercq, E. Antiviral agents active against influenza A viruses. Nat Rev Drug Discov. 5 (12), 1015-1025 (2006).
  2. von Itzstein, M. The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 6 (12), 967-974 (2007).
  3. Fiore, A. E., et al. Antiviral Agents for the Treatment and Chemoprophylaxis of Influenza. Centers for Disease Control and Prevention. , 1-26 (2011).
  4. Krammer, F., Palese, P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 14 (3), 167-182 (2015).
  5. Ren, H., Zhou, P. Epitope-focused vaccine design against influenza A and B viruses. Curr Opin Immunol. 42, 83-90 (2016).
  6. Webster, R. G., Govorkova, E. A. Continuing challenges in influenza. Ann N Y Acad Sci. 1323, 115-139 (2014).
  7. Bouvier, N. M., Lowen, A. C. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses. 2 (8), 1530-1563 (2010).
  8. Ibricevic, A., et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol. 80 (15), 7469-7480 (2006).
  9. Skehel, J. J., Wiley, D. C. RECEPTOR BINDING AND MEMBRANE FUSION IN VIRUS ENTRY: The Influenza Hemagglutinin. Annu Rev Biochem. 69 (1), 531 (2000).
  10. Rust, M. J., Lakadamyali, M., Zhang, F., Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 11 (6), 567-573 (2004).
  11. Stencel-Baerenwald, J. E., Reiss, K., Reiter, D. M., Stehle, T., Dermody, T. S. The sweet spot: defining virus-sialic acid interactions. Nature Rev Microbiol. 12 (11), 739-749 (2014).
  12. Herlocher, M. L., et al. Ferrets as a Transmission Model for Influenza: Sequence Changes in HA1 of Type A (H3N2) Virus. J Infect Dis. 184 (5), 542-546 (2001).
  13. Belser, J. A., Katz, J. M., Tumpey, T. M. The ferret as a model organism to study influenza A virus infection. Dis Model Mech. 4 (5), 575-579 (2011).
  14. Cochran, K. W., Maassab, H. F., Tsunoda, A., Berlin, B. S. Studies on the antiviral activity of amantadine hydrochloride. Ann N Y Acad Sci. 130 (1), 432-439 (1965).
  15. de Oliveira, S., Boudinot, P., Calado, A., Mulero, V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 194 (4), 1523-1533 (2015).
  16. de Oliveira, S., et al. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J Immunol. 190 (8), 4349-4359 (2013).
  17. Gabor, K. A., et al. Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment. Dis Model Mech. 7 (11), 1227-1237 (2014).
  18. Galani, I. E., Andreakos, E. Neutrophils in viral infections: Current concepts and caveats. J Leukoc Biol. 98 (4), 557-564 (2015).
  19. Gratacap, R. L., Rawls, J. F., Wheeler, R. T. Mucosal candidiasis elicits NF-kappaB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis Model Mech. 6 (5), 1260-1270 (2013).
  20. Henry, K. M., Loynes, C. A., Whyte, M. K., Renshaw, S. A. Zebrafish as a model for the study of neutrophil biology. J Leukoc Biol. 94 (4), 633-642 (2013).
  21. Mathias, J. R., et al. Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J Cell Sci. 120 (19), 3372-3383 (2007).
  22. Shelef, M. A., Tauzin, S., Huttenlocher, A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev. 256 (1), 269-281 (2013).
  23. Walters, K. B., Green, J. M., Surfus, J. C., Yoo, S. K., Huttenlocher, A. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood. 116 (15), 2803-2811 (2010).
  24. Yoo, S. K., et al. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell. 18 (2), 226-236 (2010).
  25. Yoo, S. K., Huttenlocher, A. Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish. J Leukoc Biol. 89 (5), 661-667 (2011).
  26. Yoo, S. K., et al. The role of microtubules in neutrophil polarity and migration in live zebrafish. J Cell Sci. 125 (23), 5702-5710 (2012).
  27. Winata, C. L., et al. Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev Biol. 331 (2), 222-236 (2009).
  28. Perry, S. F., Wilson, R. J., Straus, C., Harris, M. B., Remmers, J. E. Which came first, the lung or the breath?. Comp Biochem Physiol A Mol Integr Physiol. 129 (1), 37-47 (2001).
  29. Gratacap, R. L., Bergeron, A. C., Wheeler, R. T. Modeling mucosal candidiasis in larval zebrafish by swimbladder injection. J Vis Exp. (93), e52182 (2014).
  30. Adatto, I., Lawrence, C., Thompson, M., Zon, L. I. A New System for the Rapid Collection of Large Numbers of Developmentally Staged Zebrafish Embryos. PLoS ONE. 6 (6), e21715 (2011).
  31. Manicassamy, B., et al. Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci USA. 107 (25), 11531-11536 (2010).
  32. Lawrence, C. The husbandry of zebrafish (Danio rerio): a review. Aquaculture. 269 (1), 1-20 (2007).
  33. Lam, P. -. y., Harvie, E. A., Huttenlocher, A. Heat Shock Modulates Neutrophil Motility in Zebrafish. PLoS ONE. 8 (12), e84436 (2013).
  34. Shelton, M. J., et al. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob Agents Chemother. 55 (11), 5178-5184 (2011).
  35. Sullivan, C., Kim, C. H. Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol. 25 (4), 341-350 (2008).
  36. MacRae, C. A., Peterson, R. T. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 14 (10), 721-731 (2015).
  37. Brandes, M., Klauschen, F., Kuchen, S., Germain, R. N. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 154 (1), 197-212 (2013).
  38. Narasaraju, T., et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol. 179 (1), 199-210 (2011).
  39. Pillai, P. S., et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science. 352 (6284), 463-466 (2016).
  40. Stifter, S. A., et al. Functional Interplay between Type I and II Interferons Is Essential to Limit Influenza A Virus-Induced Tissue Inflammation. PLoS Pathog. 12 (1), e1005378 (2016).
  41. Vlahos, R., Stambas, J., Selemidis, S. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends Pharmacol Sci. 33 (1), 3-8 (2012).
  42. Palic, D., Andreasen, C. B., Ostojic, J., Tell, R. M., Roth, J. A. Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules. J Immunol Methods. 319 (1-2), 87-97 (2007).
  43. Renshaw, S. A., et al. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108 (13), 3976-3978 (2006).
  44. Mathias, J. R., et al. Characterization of zebrafish larval inflammatory macrophages. Dev Comp Immunol. 33 (11), 1212-1217 (2009).
  45. Pase, L., et al. Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol. 22 (19), 1818-1824 (2012).
  46. Drescher, B., Bai, F. Neutrophil in viral infections, friend or foe?. Virus Res. 171 (1), 1-7 (2013).
  47. Iwasaki, A., Pillai, P. S. Innate immunity to influenza virus infection. Nat Rev Immunol. 14 (5), 315-328 (2014).
  48. Kolaczkowska, E., Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13 (3), 159-175 (2013).
  49. Summers, C., et al. Neutrophil kinetics in health and disease. Trends Immunol. 31 (8), 318-324 (2010).
  50. Tate, M. D., Brooks, A. G., Reading, P. C. The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice. Respir Res. 9, 57 (2008).
  51. Tate, M. D., et al. Neutrophils ameliorate lung injury and the development of severe disease during influenza infection. J Immunol. 183 (11), 7441-7450 (2009).
  52. Tumpey, T. M., et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol. 79 (23), 14933-14944 (2005).
  53. Wheeler, J. G., Winkler, L. S., Seeds, M., Bass, D., Abramson, J. S. Influenza A virus alters structural and biochemical functions of the neutrophil cytoskeleton. J Leukoc Biol. 47 (4), 332-343 (1990).
  54. de Oliveira, S., et al. Cxcl8-l1 and Cxcl8-l2 are required in the zebrafish defense against Salmonella Typhimurium. Dev Comp Immunol. 49 (1), 44-48 (2015).
  55. Harvie, E. A., Huttenlocher, A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol. 98 (4), 523-537 (2015).
check_url/55235?article_type=t

Play Video

Cite This Article
Sullivan, C., Jurcyzszak, D., Goody, M. F., Gabor, K. A., Longfellow, J. R., Millard, P. J., Kim, C. H. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses. J. Vis. Exp. (119), e55235, doi:10.3791/55235 (2017).

View Video