Summary

从个体到群体度评价环境化学物质对蜜蜂发展的影响

Published: April 01, 2017
doi:

Summary

在这里我们提出 的方法,以农药污染的食物输送到两个单独的蜜蜂和蜂箱菌落。过程评估由基本幼虫饮食的体内喂养和也对蜂窝菌落的天然条件对个体蜜蜂的农药效果。

Abstract

The presence of pesticides in the beekeeping environment is one of the most serious problems that impacts the life of a honey bee. Pesticides can be brought back to the beehive after the bees have foraged on flowers that have been sprayed with pesticides. Pesticide contaminated food can be exchanged between workers which then feed larvae and therefore can potentially affect the development of honey bees. Thus, residual pesticides in the environment can become a chronic damaging factor to honey bee populations and gradually lead to colony collapse. In the presented protocol, honey bee feeding methods are described and applied to either an individual honey bee or to a colony. Here, the insect growth regulator (IGR) pyriproxyfen (PPN), which is widely used to control pest insects and is harmful to the development of honey bee larvae and pupae, is used as the pesticide. The presenting procedure can be applied to other potentially harmful chemicals or honeybee pathogens for further studies.

Introduction

农药在环境中的存在是最严重的问题之一是影响一个蜜蜂1,2,3的使用寿命。一些研究表明农药残留量的蜂蜜蜂群和蜜蜂产品的共同存在。在台湾,农药的平均应用为11-12公斤/公顷,每年(2005至13年)。农药在台湾使用量是比欧盟国家的高,以及拉丁美洲国家的4,5。换句话说,在养蜂环境正在遭受严重的农药压力,特别是在台湾,可能在其他国家。

西方蜜蜂是农业系统6的主要传粉昆虫之一,它也产生有价值的产品,如蜂蜜。然而,蜜蜂是博览会ED各种杀虫剂和这些农药能觅食上采集花蜜和花粉7,8时已喷洒杀虫剂花后带回蜂箱。他们还可以通过自己的目的来控制荨麻疹9,10,11内的虫害问题养蜂人暴露于杀虫剂。由于蜜蜂幼虫被护士蜜蜂为他们的发展,幼虫,无人机喂,甚至女王可能会接触到这些农药污染的花蜜和花粉12。需要解决的13多种农药对蜜蜂的毒性。

许多已作出努力,以评估环境农药残留的问题。杨等人。测试的蜜蜂幼虫在发展中的神经毒性杀虫剂吡虫啉的影响蜂箱和报道,吡虫啉亚致死剂量导致成年蜂14的嗅觉关联行为。此外,Urlacher 等。检查的有机磷农药,毒死蜱,对蜜蜂工人的学习表现在实验室条件下15的亚致死效应。在我们以前的研究中,我们评估的昆虫生长调节剂(IGR)的影响,吡丙醚(PPN),幼虫蜜蜂16。

在本文中,我们提出,以评估对蜜蜂的发展化学影响的方法。进行了描述并应用于任何个别蜜蜂或菌落蜜蜂馈送方法。起初,我们在殖民地幼虫上测试了不同浓度的农药污染的基本幼虫饲料(BLD),以评估在体内个别蜜蜂农药的影响我们接着来模拟自然康迪特通过使用蜂箱内农药污染的糖浆中的农药的离子。在该方法中,PPN,它被广泛用于对抗有害昆虫17和有害蜜蜂幼虫和蛹16,18,19的发展,将表示该领域的农药的负面影响的指标。

Protocol

1.准备使1升50%的糖浆。溶解1公斤蔗糖在1L的DDH 2 O. 准备在BLD吡丙醚(PPN)的解决方案。使1.1升的10,000ppm的PPN原液,并稀释于无菌的DDH 2 O储存于4℃1 L 100毫升PPN溶液。 稀释在BLD的PPN原液至0.1,1,10和100mg / kg的(PPM)最终浓度为下述实验。 让PPN糖浆(为殖民地的水平)。稀释PPN股票的50%糖浆10和100ppm的最终浓度为以下实验。 蜜蜂饲养。 注?…

Representative Results

为蜜蜂现场测试中,大号仅限于4帧部分用于产卵。此步骤可能会增加育雏密度在一帧和促进随后的观测。每个处理标记,和蜜蜂的发展显然通过透明幻灯片观察。 在 PPN-BLD的体内料到在蜂箱蜜蜂幼虫进行精确评估PPN对蜜蜂的殖民地发展的影响。使用体内供给方法促进了在蜂箱的化学处理的影响的观察。 对?…

Discussion

王后限制产蛋方法和王后交换法是用于获得本协议内的现场测试设置蜜蜂基团的关键步骤。王后限制产蛋方法允许蜜蜂的生命周期的同步。因此,研究人员可以选择相同的年龄与不同剂量农药的治疗1日龄幼虫。对于女王交换法,王后被部分A(4帧)和B(5帧)以获得蜜蜂的不同发育阶段的现场测试,以评估农药和农药残留的影响之间进行交换。此外,大量的选择育雏细胞被记录在使用透明幻灯片?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究是由格兰特105AS-13.2.3-BQ-B1从动物局动植物卫生检验检疫,农业委员会,行政院和格兰特103-2313-B-197-002-MY3从支持部科学技术部(MOST)。

Materials

Honey bee box SAN-YI Honey Factory W1266 Honeybees rearing
Queen excluder (between frames) SAN-YI Honey Factory I1575 Queen limitation 
Queen excluder (on top ) SAN-YI Honey Factory I1566 Queen limitation on top 
Bee brush SAN-YI Honey Factory, Taiwan W1414 clean the bees on frame gently
Bee feeder SAN-YI Honey Factory, Taiwan P0219 feed sugar syrup to colony
Transparent slide Wan-Shih-Chei, Taiwan (http://www.mbsc.com.tw/a01goods.asp?s_id=40) 1139 Mark the larval area on the frames (Material: Polyethylene Terephthalate, PET) (Size= Length*Width*thick= 29.7mm*21mm*0.1mm)
24 well tissu culture plate Guangzhou Jet Bio-Filtration Co., Ltd TCP011024 Rearing pupae from extraction
Autoclave Tomin medical equipmenco., LTD. TM-321 Make sterilized distilled deionized water (ddH2O)
P20 pipetman Gilson F123600 Add PPN into bee larval food pool
Incubator  Yihder Co., Ltd. LE-550RD Rearing pupae from extraction
Kimwipes COW LUNG INSTRUMENT CO., LTD KCS34155 Rearing pupae from extraction
Royal jelly National Ilan University (NIU) NIU Make basic larval diet (BLD)
D-(+)-Glucose Sigma G8270 Make basic larval diet (BLD)
D-(-)-Fructose Sigma F0127 Make basic larval diet (BLD)
Yeast extract CONDA, pronadisa 1702 Make basic larval diet (BLD)
Sucrose Taiwan sugar coporation E01071010 Make sugar syrup for bee food
Pyriproxyfen (11%) LIH-NUNG CHEMICAL CO.. LTD. Registration No. 1937 Insect growth regulator (IGR) used in the experiment

References

  1. Ruffi nengo, S. R., et al. Integrated pest management to control Varroa destructor and its implications to Apis mellifera colonies. Zootecnia Trop. 32 (2), 149-168 (2014).
  2. Mullin, C. A., et al. High levels of miticides and agrochemicals in North American apiaries, implications for honey bee health. PLoS One. 5, e9754 (2010).
  3. Lu, C. A., Chang, C. H., Tao, L., Chen, M. Distributions of neonicotinoid insecticides in the Commonwealth of Massachusetts, a temporal and spatial variation analysis for pollen and honey samples. Environ. Chem. 13, 4-11 (2016).
  4. Tsai, W. T. Analysis of coupling the pesticide use reduction with environmental policy for agricultural sustainability in Taiwan. Environ. & Pollut. 2, 59-65 (2013).
  5. Weng, Z. H. Pesticide market status and development trend (in Chinese). PRIDE. , (2016).
  6. Kevan, P. G. Pollinators as bioindicators of the state of the environment, species, activity and diversity. Agric. Ecosys. Environ. 74 (1-3), 373-393 (1999).
  7. Kevan, P. G. Forest application of the insecticide fenitrothion and its effect on wild bee pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium SPP.) in Southern New Brunswick, Canada. Biol. Conserv. 7, 301-309 (1975).
  8. Crane, E., Walker, P. . The impact of pest management on bees and pollination. , (1983).
  9. Haouar, M., Decormis, L., Rey, J. Fluvalinate applied to flowering apple trees-contamination of honey-gathering bees and hive products. Agronomie. 10 (2), 133-137 (1990).
  10. Chauzat, M. P., et al. A survey of pesticide residues in pollen loads collected by honey bees in France. J. Econ. Entomol. 99 (2), 253-262 (2006).
  11. Bonzini, S., Tremolada, P., Bernardinelli, I., Colombo, M., Vighi, M. Predicting pesticide fate in the hive (part 1), experimentally determined τ-fluvalinate residues in bees, honey and wax. Apidologie. 42 (3), 378 (2011).
  12. Sanchez-Bayo, F., Goka, K. Pesticide residues and bees-a risk assessment. PLoS One. 9 (4), e94482 (2014).
  13. Johnson, R. M., Ellis, M. D., Mullin, C. A., Frazier, M. Pesticides and honey bee toxicity-USA. Apidologie. 41, 312-331 (2010).
  14. Yang, E. C., Chang, H. C., Wu, W. Y., Chen, Y. W. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One. 7, e49472 (2012).
  15. Urlacher, E., et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42 (2), 127-138 (2016).
  16. Chen, Y. W., Wu, P. S., Yang, E. C., Nai, Y. S., Huang, Z. Y. The impact of pyriproxyfen on the development of honey bee (Apis mellifera L.) colony in field. J. Asia Pac. Entomol. 19 (3), 589-594 (2016).
  17. Dennehy, T. J., DrGain, B. A., Harpold, V. S., Brink, S. A., Nichols, R. L. . Whitefly Resistance to Insecticides in Arizona: 2002 and 2003 Results. , 1926-1938 (2004).
  18. Yang, E. C., Wu, P. S., Chang, H. C., Chen, Y. W. Effect of sub-lethal dosages of insecticides on honey bee behavior and physiology. , (2010).
  19. Fourrier, J., et al. Larval exposure to the juvenile hormone analog pyriproxyfen disrupts acceptance of and social behavior performance in adult honey bees. PLoS One. 10, e0132985 (2015).
  20. Hanley, A. V., Huang, Z. Y., Pett, W. L. Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J. Apicult.Res. 42 (4), 77-81 (2003).
  21. Kaftanoglu, O., Linksvayer, T. A., Page, R. E. Rearing honey bees, apis mellifera, in vitro 1, effects of sugar concentrations on survival and development. J. Insect Sci. 11 (96), 1-10 (2011).
  22. Vandenberg, J. D., Shimanuki, H. Technique for rearing worker honey bees in the laboratory. J. Apicult. Res. 26 (2), 90-97 (1987).
  23. Peng, Y. S. C., Mussen, E., Fong, A., Montague, M. A., Tyler, T. Effects of chlortetracycline on honey bee worker larvae reared in vitro. J. Invertebr.Pathol. 60 (2), 127-133 (1992).
  24. Bitondi, M. M., Mora, I. M., Simoes, Z. L., Figueiredo, V. L. The Apis mellifera pupal melanization program is affected by treatment with a juvenile hormone analogue. J. Insect Physiol. 44 (5-6), 499-507 (1998).
  25. Zufelato, M. S., Bitondi, M. M., Simoes, Z. L., Hartfelder, K. The juvenile hormone analog pyriproxyfen affects ecdysteroid-dependent cuticle melanization and shifts the pupal ecdysteroid peak in the honey bee (Apis mellifera). Arthropod Struct. Dev. 29 (2), 111-119 (2000).
  26. Santos, A. E., Bitondi, M. M., Simoes, Z. L. Hormone-dependent protein patterns in integument and cuticular pigmentation in Apis mellifera during pharate adult development. J. Insect Physiol. 47 (11), 1275-1282 (2001).
  27. Brouwers, E. V. M. Glucose/Fructose ratio in the food of honeybee larvae during caste differentiation. J. Apicult.Res. 23 (2), 94-101 (1984).
  28. Howe, S. R., Dimick, P. S., Benton, A. W. Composition of freshly harvested and commercial royal jelly. J. Apicult. Res. 24 (1), 52-61 (1985).
check_url/55296?article_type=t

Play Video

Cite This Article
Ko, C., Chen, Y., Nai, Y. Evaluating the Effect of Environmental Chemicals on Honey Bee Development from the Individual to Colony Level. J. Vis. Exp. (122), e55296, doi:10.3791/55296 (2017).

View Video