Summary

마우스의 다발성 경화증의 EAE 모델에서 시신경염 및 뇌 염증의 생물 발광 및 근적외선 영상

Published: March 01, 2017
doi:

Summary

우리는 생체 살아있는 생물 발광 및 근적외선 SJL / J 마우스에서 다발성 경화증에 대한 실험자가 면역 뇌척수염 (EAE) 모델에서 시신경염과 뇌염의 이미징 기술을 보여준다.

Abstract

SJL / J 쥐에 실험자가 면역 뇌척수염 (EAE)는 재발 – 완화 성 다발성 경화증 (RRMS)의 모델이다. 운동 기능 적자를 설명하는 임상 EAE 점수는 척수의 면역 매개 염증의 기본 판독입니다. 그러나 점수와 체중은 뇌의 염증과 시신경염의 생체 내 평가를 허용하지 않습니다. 후자는 2/3 MS 환자에서 초기 자주 표현된다. 여기서는 생체 촬상 시스템을 이용하여 살아있는 쥐 생물 발광과 EAE는 시신경염을 유발 평가 근적외선 라이브 영상, 뇌 염증 및 혈액 – 뇌 장벽 (BBB) 중단하는 방법을 보여준다. 산화 효소에 의해 활성화 생물 발광 기판은 주로 시신경염 나타났다. 신호는 특정이었고, 임상 점수를 병렬 약물 효과 및 질병 시간 과정의 시각화를 허용했다. vasculatur 내에 남아 페 길화 된 형광 나노 입자장시간 E는 BBB의 무결성을 평가하기 위해 사용되었다. 근적외선 영상은 질병의 피크에서 BBB 누수를 한 것으로 밝혀졌습니다. 신호는 눈 주위 강했다. 매트릭스 메탈 용 근적외선 기판 EAE – 유발 된 염증을 평가하기 위해 사용되었다. 자동 형광 정량 unmixing 스펙트럼을 요구 신호 간섭. 전반적으로, 생물 발광 이미징 EAE 관련 시신경염 약물 효과를 평가하기위한 신뢰성있는 방법이고 신호 특이성 견고성 정량의 용이성 및 비용면에서 근적외선 기술보다 우수 하였다.

Introduction

Multiple sclerosis is caused by the autoimmune-mediated attack and destruction of the myelin sheath in the brain and the spinal cord1. With an overall incidence of about 3.6 cases per 100,000 people a year in women and about 2.0 in men, MS is the second most common cause of neurological disability in young adults, after traumatic injuries2,3. The disease pathology is contributed to by genetic and environmental factors4 but is still not completely understood. Autoreactive T lymphocytes enter the central nervous system and trigger an inflammatory cascade that causes focal infiltrates in the white matter of the brain, spinal cord, and optic nerve. In most cases, these infiltrates are initially reversible, but persistence increases with the number of relapses. A number of rodent models have been developed to study the pathology of the disease. The relapsing-remitting EAE in SJL/J mice and the primary-progressive EAE in C57BL6 mice are the most popular models.

The clinical EAE scores, which describe the extent of the motor function deficits, and body weight are the gold standards to assess EAE severity. These clinical signs agree with the extent of immune cell infiltration and myelin destruction in the spinal cord and moderately predict drug treatment efficacy in humans5. However, these signs mainly reflect the destruction of the ventral fiber tracts in the spinal cord. Presently, there is no easy, non-invasive, reliable, and reproducible method to assess in vivo brain infiltration and optic neuritis in living mice.

The in vivo imaging agrees with the 3 “R” principles of Russel and Burch (1959), which claim a Replacement, Reduction, and Refinement of animal experiments6, because imaging increases the readouts of one animal at several time points and allows for a reduction of the overall numbers. Presently, inflammation or myelin status is mainly assessed ex vivo via immunohistochemistry, FACS-analysis, or different molecular biological methods7, all requiring euthanized mice at specific time points.

A number of in vivo imaging system probes have been developed to assess inflammation in the skin, joints, and vascular system. The techniques rely on the activation of bioluminescent or near-infrared fluorescent substrates by tissue peroxidases, including myeloperoxidase (MPO), matrix metalloproteinases (MMPs)8, and cathepsins9 or cyclooxygenase2. These probes have been mainly validated in models of arthritis or atherosclerosis9,10. A cathepsin-sensitive probe has also been used for fluorescence molecular tomographic imaging of EAE11. MMPs, particularly MMP2 and MMP9, contribute to the protease-mediated BBB disruption in EAE and are upregulated at sites of immune cell infiltration12, suggesting that these probes may be useful for EAE imaging. The same holds true for peroxidase or cathepsin-based probes. Technically, imaging of inflammation in the brain or spinal cord is substantially more challenging because the skull or spine absorb bioluminescent and near-infrared signals.

In addition to inflammation indicators, fluorescent chemicals have been described, which specifically bind to myelin and may allow for quantification of myelination13. A near-infrared fluorescent probe, 3,3′-diethylthiatricarbocyanine iodide (DBT), was found to specifically bind to myelinated fibers and was validated as a quantitative tool in mouse models of primary myelination defects and in cuprizone-evoked demyelination14. In EAE, the DBT signal was rather increased, reflecting the inflammation of the myelin fibers5.

An additional hallmark of EAE and MS is the BBB breakdown, resulting in increased vascular permeability and the extravasation of blood cells, extracellular fluid, and macromolecules into the CNS parenchyma. This can lead to edema, inflammation, oligodendrocyte damage, and, eventually, demyelination15,16. Hence, visualization of the BBB leak using fluorescent probes, such as fluorochrome-labeled bovine serum albumin5, which normally distribute very slowly from blood to tissue, may be useful to assess EAE.

In the present study, we have assessed the usefulness of different probes in EAE and show the procedure for the most reliable and robust bioluminescent technique. In addition, we discuss the pros and cons of near-infrared probes for MMP activity and BBB integrity.

Protocol

SJL 1. EAE 유도 / J 마우스 마우스 11 주 된 여성 SJL / J 마우스를 사용하고이 약 7 일 동안 실험 방으로 길들 할 수 있습니다. 그룹 당 N = 10 마우스를 사용합니다. 약물 효과의 평가를 위해 연속적으로 식수 통하거나 3 오일 면역화 후 (N = 그룹당 10)을 출발 음식 펠릿 통해 대조군 약물 위약을 투여. 질병의 피크 동안 우유 또는 3 % 설탕 물에 젖은 콘플레이크와 약물 또는 위?…

Representative Results

시신경염의 생물 발광의 시간 코스 염증 프로브의 생물 발광 신호는 눈 주위 강한이었고 시신경염와 EAE 마우스에서만 일어났다. 신호는 비 EAE 마우스 나 염증 프로브를 주입하지 생쥐도 발생 하였다. 쥐를 복구 할 때 신호가 사라졌다. 따라서, 신호 시신경염 특정하고, 상기 신호의 피크 임상 EAE 스코어의 피크 평…

Discussion

본 동영상은 SJL / J 마우스의 EAE의 생체 내 이미징의 생물 발광 및 근적외선 형광을위한 기술을 보여줍니다. 우리는 염증에 민감한 프로브를 사용하여 생물 발광 영상은 주로 시신경염를 표시하고 정량화가 EAE 심각도의 임상 평가 및 약물의 효과에 동의 것으로 나타났다. 신호가 척추에 의해 흡수되기 때문에, 생물 발광 촬상 방법 가능성 EAE 현시 (17)의 기본 위치 인 요추 ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

이 연구는 독일 연구 협회 (CRC1039 A3) 및 연구 자금 지원 프로그램 헤센, 중개 의학 및 약학 TMP 연구 센터의 주 "Landesoffensive 주르 ENTWICKLUNG wissenschaftlich-ökonomischer Exzellenz"(LOEWE)과 그렇지 크로네-는 Fresenius 재단 지원 (EKFS), 연구 교육 그룹 중개 연구 혁신 – 제약 (TRIP).

Materials

AngioSpark-680 Perkin Elmer, Inc., Waltham, USA NEV10149 Imaging probe, pegylated nanoparticles, useful for imaging of blood brain barrier integrity
MMP-sense 680 Perkin Elmer, Inc., Waltham, USA NEV10126 Imaging probe, activatable by matrix metalloproteinases, useful for imaging of inflammation
XenoLight RediJect Inflammation Probe Perkin Elmer, Inc., Waltham, USA 760535 Imaging probe, activatable by oxidases, useful for imaging of inflammation
PLP139-151/CFA emulsion  Hooke Labs, St Lawrence, MA EK-0123 EAE induction kit
Pertussis Toxin Hooke Labs, St Lawrence, MA EK-0123 EAE induction kit
IVIS Lumina Spectrum Perkin Elmer, Inc., Waltham, USA Bioluminescence and Infrared Imaging System
LivingImage 4.5 software  Perkin Elmer, Inc., Waltham, USA CLS136334 IVIS analysis software
Isoflurane Abbott Labs, Illinois, USA 26675-46-7 Anaesthetic

References

  1. Compston, A., Coles, A. Multiple sclerosis. Lancet. 372 (9648), 1502-1517 (2008).
  2. Dunn, J. Impact of mobility impairment on the burden of caregiving in individuals with multiple sclerosis. Expert Rev Pharmacoecon Outcomes Res. 10 (4), 433-440 (2010).
  3. Dutta, R., Trapp, B. D. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 93 (1), 1-12 (2011).
  4. Sawcer, S., et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 476 (7359), 214-219 (2011).
  5. Schmitz, K., et al. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice. EMBO Mol Med. 6 (11), 1398-1422 (2014).
  6. Balls, M. The origins and early days of the Three Rs concept. Altern Lab Anim. 37 (3), 255-265 (2009).
  7. Barthelmes, J., et al. Induction of Experimental Autoimmune Encephalomyelitis in Mice and Evaluation of the Disease-dependent Distribution of Immune Cells in Various Tissues. J Vis Exp. (111), (2016).
  8. Leahy, A. A., et al. Analysis of the trajectory of osteoarthritis development in a mouse model by serial near-infrared fluorescence imaging of matrix metalloproteinase activities. Arthritis Rheumatol. 67 (2), 442-453 (2015).
  9. Scales, H. E., et al. Assessment of murine collagen-induced arthritis by longitudinal non-invasive duplexed molecular optical imaging. Rheumatology (Oxford). 55 (3), 564-572 (2016).
  10. Nahrendorf, M., et al. Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res. 100 (8), 1218-1225 (2007).
  11. Eaton, V. L., et al. Optical tomographic imaging of near infrared imaging agents quantifies disease severity and immunomodulation of experimental autoimmune encephalomyelitis in vivo. J Neuroinflammation. 10, (2013).
  12. Kandagaddala, L. D., Kang, M. J., Chung, B. C., Patterson, T. A., Kwon, O. S. Expression and activation of matrix metalloproteinase-9 and NADPH oxidase in tissues and plasma of experimental autoimmune encephalomyelitis in mice. Exp Toxicol Pathol. 64 (1-2), 109-114 (2012).
  13. Wang, C., et al. In situ fluorescence imaging of myelination. J Histochem Cytochem. 58 (7), 611-621 (2010).
  14. Wang, C., et al. Longitudinal near-infrared imaging of myelination. J Neurosci. 31 (7), 2382-2390 (2011).
  15. Engelhardt, B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm. 113 (4), 477-485 (2006).
  16. Badawi, A. H., et al. Suppression of EAE and prevention of blood-brain barrier breakdown after vaccination with novel bifunctional peptide inhibitor. Neuropharmacology. 62 (4), 1874-1881 (2012).
  17. Simmons, S. B., Pierson, E. R., Lee, S. Y., Goverman, J. M. Modeling the heterogeneity of multiple sclerosis in animals. Trends in immunology. 34 (8), 410-422 (2013).
  18. Lin, T. H., et al. Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis. Neurobiol Dis. 67, 1-8 (2014).
  19. Knier, B., et al. Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis. J Autoimmun. 56, 34-44 (2015).
  20. Schellenberg, A. E., Buist, R., Yong, V. W., Del Bigio, M. R., Peeling, J. Magnetic resonance imaging of blood-spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis. Magn Reson Med. 58 (2), 298-305 (2007).
  21. Mori, Y., et al. Early pathological alterations of lower lumbar cords detected by ultrahigh-field MRI in a mouse multiple sclerosis model. Int Immunol. 26 (2), 93-101 (2014).
  22. Bittner, S., et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 19 (9), 1161-1165 (2013).
  23. Theien, B. E., et al. Differential effects of treatment with a small-molecule VLA-4 antagonist before and after onset of relapsing EAE. Blood. 102 (13), 4464-4471 (2003).
  24. Hawkins, B. T., Davis, T. P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 57 (2), 173-185 (2005).
  25. Coisne, C., Mao, W., Engelhardt, B. Cutting edge: Natalizumab blocks adhesion but not initial contact of human T cells to the blood-brain barrier in vivo in an animal model of multiple sclerosis. J Immunol. 182 (10), 5909-5913 (2009).
  26. Andresen, V., et al. High-resolution intravital microscopy. PLoS One. 7 (12), e50915 (2012).
  27. Bukilica, M., et al. Stress-induced suppression of experimental allergic encephalomyelitis in the rat. Int J Neurosci. 59 (1-3), 167-175 (1991).
check_url/55321?article_type=t

Play Video

Cite This Article
Schmitz, K., Tegeder, I. Bioluminescence and Near-infrared Imaging of Optic Neuritis and Brain Inflammation in the EAE Model of Multiple Sclerosis in Mice. J. Vis. Exp. (121), e55321, doi:10.3791/55321 (2017).

View Video