Summary

通过长期进步力量训练提高力量,力量,肌肉有氧能力和葡萄糖耐量

Published: July 05, 2017
doi:

Summary

通过同时使用几种方法研究了短期阻力训练对老年人的影响。与对照组相比,观察到许多改善,包括肌肉需氧能力,葡萄糖耐量,强度,功率和肌肉质量( 涉及细胞信号和肌纤维组成的蛋白质)。

Abstract

该方案描述了同时使用广泛的方法来检查执行短期抵抗训练(RET)的老年人的肌肉有氧能力,葡萄糖耐量,强度和功率。 RET参与者(71±1年,范围65-80)在8周内每周三次监督进行性进行性阻力训练。与没有训练的对照组相比,RET显示了用于指示强度,功率,葡萄糖耐量和肌肉有氧能力的几个参数的措施的改善。在健身房里进行强度训练,健身器材只有健壮的健身器材。用于膝盖伸肌强度的等动力测力计允许测量同步,偏心和静态强度,其为RET组增加(8-12%后和预测试)。在起始0-30毫秒的功率(力发展速度,RFD)也显示出RET组增加(52%)。葡萄糖耐量试验与frequent血糖测量结果显示,RET组在2 h(14%)和曲线下面积(21%)之间的血糖值方面均有改善。血脂异常也有所改善(8%)。从使用组织化学制备的肌肉活检样品中,IIa型纤维的量增加,RET组中IIx的下降趋势反映了纤维组成的氧化性变化。在RET组中,蛋白质印迹(用于确定与肌肉蛋白质合成的信号传导相关的蛋白质含量)在Akt和mTOR中都显示出69%的升高;在RET组中,这也显示OXPHOS复合物II和柠檬酸合酶(均为〜30%)和复合IV(90%)的线粒体蛋白质增加。我们证明这种进行性抵抗训练提供了各种改进( 例如强度,功率,有氧能力,葡萄糖耐量和血浆脂质分布)。

Introduction

老化与肌肉质量(肌肉减少),力量和功率的丧失有关。力量减弱,甚至更重要的是力量,导致不动,受伤风险增加,生活质量下降。抵抗训练是消除肌肉减少和肌肉功能恶化的一个众所周知的策略。肌肉力量的粗略估计可以从负载或实现的重复次数获得。然而,这项研究使用等动力测力仪获得关于肌肉功能的更详细和准确的信息,以收集关于等轴,同心和偏心收缩的扭矩信息以及力发展的动力学。

在全身水平(VO 2max )和骨骼肌中的有氧能力在老年人中减少。心率随年龄的下降解释了VO 2max 1减少的很大一部分,但减少了明显的氧化能力,主要与身体活动减少有关2 ,确实有贡献。线粒体功能受损也可能参与肌肉减少症和胰岛素抵抗的发展3 。通过生物化学分析位于基质( 柠檬酸合成酶)和内线粒体膜中的线粒体酶和蛋白质复合物的含量,在肌肉活检中评估肌肉需氧量。此外,组织化学技术用于测量阻力训练对肌肉形态的影响( 纤维类型组成,纤维横截面积和毛细血管密度)。评估肌肉需氧能力的另一种方法是使用磁共振波谱法测量运动诱导的耗竭后肌酸磷酸盐再合成的速率4 。该方法提供了体内肌肉有氧能力的估计但不能区分线粒体功能障碍和循环系统疾病。此外,设备的高成本限制了在大多数实验室中使用这种技术。 5岁以上老年人耐力运动可以改善有氧能力(VO 2max和线粒体密度)。然而,阻力训练对这些参数的影响较少,特别是在老年受试者中,结果相互矛盾7,8,9,10

2型糖尿病是老年人普遍存在的疾病。身体不活动和肥胖是解释2型糖尿病发病率增加的主要生活方式相关因素。低强度有氧运动通常被推荐给具有降低葡萄糖耐量的受试者。但是,这是不对的老年人力量训练如何影响葡萄糖耐量/胰岛素敏感性11,12 。测量胰岛素敏感度的最准确的方法是使用葡萄糖钳夹技术,其中血糖在升高的胰岛素13的条件下通过葡萄糖输注保持恒定。这种技术的缺点是耗时和侵入性(动脉导管插入),需要特殊的实验室设施。在这项研究中,使用了在医疗保健单位中常见的口服葡萄糖耐量试验。这种方法适用于若干受试者在有限的时间内进行调查。

实验程序的测试和时间表可概括如下。使用三个不同的日期进行测试,在八周期间之前和之后,具有相同的安排和大致的时间表(每天≥24小时,< strong>图1)。在第一个测试日,测量:人体测量数据,如身高,身体质量,无脂肪质量(FFM)和大腿周长( 即,轻度仰卧位顶点髌骨上方15 cm);次最大循环能力;和膝关节肌肉力量,如步骤4和5所述。在第二次测试当天从大腿进行肌肉活检。有关进一步说明,请参阅步骤6.1。在最后一个测试日测试口服葡萄糖耐量(OGTT)。有关进一步说明,请参阅步骤7.1。要求所有参与者避免24小时的体力活动,并在每个测试日之前快速过夜。然而,要求他们在OGTT测试日前48小时避免剧烈的身体活动。要求他们遵循正常的日常体力活动和饮食习惯。请注意,干预前和干预后,两组自我报告的食物摄入量和食物类型均未变化。

figimg“src =”/ files / ftp_upload / 55518 / 55518fig1.jpg“/>
图1:实验方案。原理图,示意图。每个受试者之间的三个测试前和测试后的时间是相似的,并且至少24小时。更多细节在文中给出。这个数字已经从Frank 等人修改SCAND。 J.Med。科学。体育 2016:26,764-73。 28 请点击此处查看此图的较大版本。

本研究旨在调查老年人短期抵抗训练对肌肉氧化能力和葡萄糖耐量的影响。第二个目的是检查对力量,力量和肌肉质量改善的影响( 参与细胞信号传导和肌纤维组成的蛋白质)。

Protocol

瑞典斯德哥尔摩区域伦理委员会批准了调查的设计。 材料招募相对健康的65-80岁的男性和女性,BMI值在20和30 kg·m -2之间 。将其随机分为两组。确保两个人的身体活动水平相对较低( 即日常身体活动中等,没有定期的运动训练)。 排除β受体阻滞剂使用者和冠状动脉疾病患者以及严重的神经系统或联合问题。 在通知他们在测试和培训课程?…

Representative Results

材料在研究中,21岁相对健康的男性,65-80岁,体重指数在20〜30 kg·m2之间,随机分为两组。两组人员身体活动水平相对较低( 即日常身体活动水平较低,无规律运动训练)。一组(n = 12,6名女性和6名男性)在训练员身上执行RET,每周三次,共8周,另一组作为对照组(n = 10,5名女性和5名男性)。 RET和CON组在年龄,性别和体…

Discussion

在这项研究中,已经使用了一些技术来研究短期进行性耐力训练对老年受试者的肌肉功能/形态,有氧能力和葡萄糖耐量的影响。主要发现是,与对照组相比,肌肉有氧能力,葡萄糖耐量,强度,功率和肌肉质量( 涉及细胞信号和肌纤维组成的蛋白质)都有许多改善。例如:静态,偏心和同心最大膝关节伸展强度(8-12%);训练负荷(19-72%),最初的力发展速度(RFD)在0-30毫秒(52%);…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢AndréeNienkerk,Dennis Peyron和SebastianSkjöld监督培训课程和几项测试;参加课题;给Tim Crosfield进行语言修订;以及瑞典体育与健康科学学院的经济支持。

Materials

Western blot
Pierce 660nm Protein Assay Kit Thermo Scientific, Rockford, IL, USA 22662
SuperSignal West Femto Maximum Sensitivity Substrate  Thermo Scientific 34096
Halt Protease Inhibitor Cocktail (100X)  Thermo Scientific 78429
Restore PLUS Western Blot Stripping Buffer Thermo Scientific 46430
Pierce Reversible Protein Stain Kit for PVDF Membranes Thermo Scientific 24585
10 st – 4–20% Criterion TGX Gel, 18 well, 30 µl  Bio-Rad Laboratories, Richmond, CA, USA 567-1094
Immun-Blot PVDF Membrane  Bio-Rad 162-0177
Precision Plus Protein Dual Color Standards  Bio-Rad 161-0374
2x Laemmli Sample Buffer Bio-Rad 161-0737
10x Tris/Glycine Bio-Rad 161-0771
2-Mercaptoethanol Bio-Rad 161-0710
Tween 20 Bio-Rad P1379-250ML
Band analysis with Quantity One version 4.6.3.software Bio-Rad
1% phosphatase inhibitor coctail Sigma-Aldrich, Saint Louis, Missouri, USA
Name Company Catalog Number Comments
Antibodies
mTOR (1:1000) Cell Signaling, Danvers, Massachusetts, USA 2983
Akt (1:1000) Cell Signaling, Danvers 9272
Secondary anti-rabbit and anti-mouse HRP-linked (1:10000) Cell Signaling, Danvers
Citrate synthase (CS) (1:1000) Gene tex, San Antonio, California, USA
OXPHOS (1:1000) Abcam, Cambridge, UK
Name Company Catalog Number Comments
Equipment – Analysis of muscle samples
Bullet Blender 1.5 for homogenizing Next Advance, New York, USA
Plate reader Tecan infinite F200 pro, Männedorf, Switzerland
Name Company Catalog Number Comments
Histochemistry
Mayer hematoxylin HistoLab, Västra Frölunda, Sweden  1820
Oil Red o Sigma-Aldrich, Saint Louis, Missouri, USA 00625-25y
NaCl Sigma-Aldrich 793566-2.5 kg
Cobalt Chloride Sigma-Aldrich 60818-50G
Amylase Sigma-Aldrich A6255-25MG
ATP Sigma-Aldrich A2383-5G
Glycine VWR-chemicals / VWR-international, Spånga, Sweden 101196X
Calcium Chloride VWR-chemicals / VWR-international 22328.262
Iso-pentane VWR-chemicals / VWR-international 24872.298
Etanol 96% VWR-chemicals / VWR-international 20905.296
NaOH MERCK, Stockholm, Sweden 1.06498.1000
Na acetate MERCK 1.06268.1000
KCl MERCK 1.04936.1000
Ammonium Sulphide MERCK U1507042828
Acetic acid 100% MERCK 1.00063.2511
Schiffs´ Reagent MERCK 1.09033.0500
Periodic acid MERCK 1.00524.0025
Chloroform MERCK 1.02445.1000
pH-meter LANGE HACH LANGE GMBH, Dusseldorf, Germany
Light microscope Olympus BH-2, Olympus, Tokyo, Japan
Cryostat  Leica CM1950 Leica Microsystems, Wetzlar, Germany
Leica software Leica Qwin V3 Leica Microsystems
Gel Doc 2000 – Bio-Rad, camera setup Bio-Rad Laboratories AB, Solna, Sweden 
Software program Quantift One – 4.6 (version 4.6.3; Bio Rad) Bio-Rad Laboratories AB, Solna, Sweden 
Name Company Catalog Number Comments
Oral glucos tolerance test, OGTT
Glukos APL 75 g APL, Stockholm, Sweden 323,188
Automated analyser Biosen 5140 EKF Diagnostics, Barleben, Germany
Insulin and C-peptide in plasma kit ELISA Mercodia AB, Uppsala Sweden 10-1132-01, 10-1134-01
Plate reader Tecan infinite F200 pro, Männedorf, Switzerland
Name Company Catalog Number Comments
Further equipment
Measures of fat-free-mass FFM-Tanita T5896, Tanita, Tokyo, Japan
Strength training equipment for all training exercises Cybex International Inc., Medway, Massachusetts, USA 
Cycle ergometer  Monark Ergometer 893E, Monark Exercises, Varberg, Sweden 
Heart rate monitor RS800, Polar Polar Electro OY, Kampele, Finland
Oxycin-Pro – automatic ergo-spirometric device Erich Jaeger GmbH, Hoechberg, Germany
Isokinetic dynamometer, Isomed 2000, knee muscle strength D&R Ferstl GmbH, Henau, Germany
CED 1401 data acquisition system and Signal software Cambridge Electronic Design, Cambridge, UK
Software for muscle strength analysis, Spike 2, version 7 Signal Hound, LA Center, WA, USA
Statistica software for statistical analyses Statistica, Stat soft. inc, Tulsa, Oklahoma, USA
Name Company Catalog Number Comments
Muscle biopsy equipment
Weil Blakesley conchotome Wisex, Mölndal, Sweden
Local anesthesia  Carbocain, 20 mL, 20 mg/mL; Astra Zeneca, Södertälje, Sweden 169,367
Surgical Blade Feather Safety Razor CO, LTD, Osaka, Japan  11048030

References

  1. Carrick-Ranson, G., et al. The effect of age-related differences in body size and composition on cardiovascular determinants of VO2max. J. Gerontol. A Biol. Sci. Med. Sci. 68 (5), 608-616 (2013).
  2. Peterson, C. M., Johannsen, D. L., Ravussin, E. Skeletal muscle mitochondria and aging: a review. J. Aging. 2012, 194821 (2012).
  3. Russell, A. P., Foletta, V. C., Snow, R. J., Wadley, G. D. Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim. Biophys. Acta. 1840 (4), 1276-1284 (2014).
  4. Conley, K. E., Jubrias, S. A., Esselman, P. C. Oxidative capacity and ageing in human muscle. J. Physiol. 526 (Pt 1), 203-210 (2000).
  5. Holloszy, J. O. Adaptation of skeletal muscle to endurance exercise. Med. Sci. Sports. 7 (3), 155-164 (1975).
  6. Menshikova, E. V., Ritov, V. B., Fairfull, L., Ferrell, R. E., Kelley, D. E., Goodpaster, B. H. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci. 61 (6), 534-540 (2006).
  7. Balakrishnan, V. S., et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5 (6), 996-1002 (2010).
  8. Ferrara, C. M., Goldberg, A. P., Ortmeyer, H. K., Ryan, A. S. Effects of aerobic and resistive exercise training on glucose disposal and skeletal muscle metabolism in older men. J. Gerontol. A Biol. Sci. Med. Sci. 61 (5), 480-487 (2006).
  9. Frontera, W. R., Meredith, C. N., O’Reilly, K. P., Evans, W. J. Strength training and determinants of VO2max in older men. J. Appl. Physiol. (1985). 68 (1), 329-333 (1990).
  10. Toth, M. J., Miller, M. S., Ward, K. A., Ades, P. A. Skeletal muscle mitochondrial density, gene expression, and enzyme activities in human heart failure: minimal effects of the disease and resistance training. J. Appl. Physiol. (1985). 112 (11), 1864-1874 (2012).
  11. Zachwieja, J. J., Toffolo, G., Cobelli, C., Bier, D. M., Yarasheski, K. E. Resistance exercise and growth hormone administration in older men: effects on insulin sensitivity and secretion during a stable-label intravenous glucose tolerance test. Metabolism. 45 (2), 254-260 (1996).
  12. Davidson, L. E., et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Arch. Intern. Med. 169 (2), 122-131 (2009).
  13. DeFronzo, R. A., Tobin, J. D., Andres, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237 (3), E214-E223 (1979).
  14. Åstrand, P. O., Ryhming, I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J. Appl. Physiol. 7 (2), 218-221 (1954).
  15. Björkman, F., Ekblom-Bak, E., Ekblom, &. #. 2. 1. 4. ;., Ekblom, B. Validity of the revised Ekblom Bak cycle ergometer test in adults. Eur. J. Appl. Physiol. 116 (9), 1627-1638 (2016).
  16. Seger, J. H., Westing, S. H., Hanson, M., Karlson, E., Ekblom, B. A new dynamometer measuring eccentric and eccentric muscle strength in accelerated, decelerated and isokinetic movements: validity and reproducibility. Eur. J. Appl. Physiol. 57 (5), 526-530 (1988).
  17. Westing, S. H., Seger, J. Y., Karlson, E., Ekblom, B. Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man. Eur. J. Appl. Physiol. 58 (1-2), 100-104 (1988).
  18. Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 93 (4), 1318-1326 (2002).
  19. Andersen, L. L., Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 96 (1), 46-52 (2006).
  20. Henriksson, K. G. “Semi-open” muscle biopsy technique. A simple outpatient procedure. Acta Neurol. Scand. 59 (6), 317-323 (1979).
  21. Matsuda, M., DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 22 (9), 1462-1470 (1999).
  22. American Diabetes, Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 28, S37-S42 (2005).
  23. Moberg, M., Apró, W., Ekblom, B., van Hall, G., Holmberg, H. C., Blomstrand, E. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. Am. J. Physiol. Cell Physiol. 310 (11), C874-C884 (2016).
  24. Antharavally, B. S., Carter, B., Bell, P. A., Krishna Mallia, ., A, A high-affinity reversible protein stain for Western blots. Anal. Biochem. 329 (2), 276-280 (2004).
  25. Brooke, M. H., Kaiser KK, . Muscle fiber types: how many and what kind?. Arch. Neurol. 23 (4), 369-379 (1970).
  26. Brooke, M. H., Kaiser, K. K. Three "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhydryl dependence. J. Histochem. Cytochem. 18 (9), 670-672 (1970).
  27. Andersen, P. Capillary density in skeletal muscle of man. Acta Physiol. Scand. 95 (2), 203-205 (1975).
  28. Frank, P., Andersson, E., Pontén, M., Ekblom, B., Ekblom, M., Sahlin, K. Strength training improves muscle aerobic capacity and glucose tolerance in elderly. Scand. J. Med. Sci. Sports. 26 (7), 764-773 (2016).
  29. Blomstrand, E., Celsing, F., Fridén, J., Ekblom, B. How to calculate human muscle fibre areas in biopsy samples–methodological considerations. Acta Physiol. Scand. 122 (4), 545-551 (1984).
  30. Cuthbertson, D., et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 19 (3), 422-424 (2005).
  31. Vincent, K. R., Braith, R. W., Feldman, R. A., Kallas, H. E., Lowenthal, D. T. Improved cardiorespiratory endurance following 6 months of resistance exercise in elderly men and women. Arch. Intern. Med. 162 (6), 673-678 (2002).
  32. Cadore, E. L., et al. Effects of strength, endurance, and concurrent training on aerobic power and dynamic neuromuscular economy in elderly men. J. Strength Cond. Res. 25 (3), 758-766 (2011).
  33. Jubrias, S. A., Esselman, P. C., Price, L. B., Cress, M. E., Conley, K. E. Large energetic adaptations of elderly muscle to resistance and endurance training. J. Appl. Physiol. (1985). 90 (5), 1663-1670 (1985).
  34. Benton, C. R., Wright, D. C., Bonen, A. PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions. Appl. Physiol. Nutr. Metab. 33 (5), 843-862 (2008).
check_url/55518?article_type=t

Play Video

Cite This Article
Andersson, E. A., Frank, P., Pontén, M., Ekblom, B., Ekblom, M., Moberg, M., Sahlin, K. Improving Strength, Power, Muscle Aerobic Capacity, and Glucose Tolerance through Short-term Progressive Strength Training Among Elderly People. J. Vis. Exp. (125), e55518, doi:10.3791/55518 (2017).

View Video