Summary

自体 Microfractured 与纯化脂肪组织在关节镜下治疗距骨软骨病变

Published: January 23, 2018
doi:

Summary

本研究的目的是报告一个协议的关节镜治疗软骨病变的距骨使用 microfractured 和纯化脂肪干细胞。

Abstract

近年来, 再生技术已被越来越多的研究和使用, 以治疗软骨病变的距骨。特别是, 有几项研究把注意力集中在脂肪组织的间充质干细胞上。脂肪来源的干细胞 (干细胞) 表现出与其他间充质细胞相似的形态学特征和性质, 并能分化成多种细胞株。此外, 这些细胞也广泛适用于皮下组织, 代表 10-30% 的正常体重, 每克组织5000细胞浓度。

在所提出的技术, 第一步是从腹部收获干细胞和一个过程的微和纯化;其次, 手术的过程是完全关节, 较少软组织剥离, 更好的关节可视化, 和更快的恢复相比, 标准开放程序。关节镜的特点是第一阶段的病灶是确定, 孤立, 并准备与 microperforations;第二步, 执行干, 涉及注射脂肪组织在病变的水平。

2016年1月至2016年9月期间, 四例患者经关节镜治疗, microfractured 和纯化的脂肪组织在距骨软骨病变。所有患者报告在手术后六月的临床改善没有报告的并发症。在最新的随访中, 功能评分是令人鼓舞的, 并证实该技术提供了可靠的疼痛缓解和改善的软骨病变的距骨。

Introduction

关节镜是治疗距骨 (OLTs) 软骨病变的金标准, 目的是减轻疼痛, 恢复功能, 改善生活质量, 特别是在年轻和积极的患者。

目前, 关节镜技术可分为三种。修复技术通过病灶清除和 microperforations, 刺激骨髓细胞获得。重建技术用自体或异源 ostechondral 移植取代病变。再生技术利用多能细胞分化和复制的能力来重建受损组织1,2,3,4,5,6.

近年来, 再生技术已经成为众多的体外体内研究的主题, 用于治疗 OLTs, 特别是从脂肪组织中提取的间充质干细胞 (干细胞)7,8,9. 这些间充质干细胞表现出与其他组织分离的其他多能细胞相似的形态学和功能特征;他们也有能力区分成几个和不同的细胞线都在体外在体内10,11,12,13.对这些细胞的研究主要是由于它们的局部化, 事实上它们代表了正常体重的10% 到 30%, 每克组织的浓度为5000细胞,13,14。另一方面, 限制使用这些细胞的因素与它们在实验室过程中的处理有关。lipoaspirate 含有脂肪细胞、胶原纤维和正常血管成分的聚合体, 酶 i 型胶原处理, 在培养前受到溶血。目的是描述使用 microfractured 和纯化脂肪组织治疗距骨软骨病变的方案。

Protocol

在涉及人类参加者的研究中所执行的所有程序都符合机构和/或国家研究委员会的道德标准, 以及1964《赫尔辛基宣言》及其后的修正案或可比较的道德标准. 1. 病史 开始临床检查与详细的患者历史。注: 在踝关节不稳定的情况下, 必须始终怀疑其是否伴有肿胀、僵硬、疼痛和关节阻塞等反复扭伤。此外, 在许多情况下, 肝移植可能与系统性疾病史有关, 如炎症或血管疾?…

Representative Results

2016年1月至2016年9月期间, 四例患者经关节镜治疗, microfractured 和纯化的脂肪组织在距骨软骨病变。所有患者在手术后六月报告临床改善。在表 1中报告了初步临床结果。无并发症发生。 近年来, 使用干细胞治疗足踝部病变的情况有所增加。在 2013年, Kim et al.23治疗65老年患者, 50 岁以上的症状?…

Discussion

近年来, 临床和基础研究已经将注意力集中在干细胞治疗不同肌肉骨骼疾病的作用上。本文的目的是描述使用 microfractured 和纯化脂肪组织与关节镜 microperforations 治疗骨距软骨病变的协议。该协议涉及几个关键步骤, 具有高风险的并发症。在脂肪收获过程中, 并发症可分为局部或全身并发症。

术后最常见的并发症是轮廓不规则, 发病率为2.7%。这可以避免使用小套管, 不进行肤浅?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这些过程是使用 Lipogems 系统执行的。

Materials

PROCESS KIT – PROCESSING KIT FOR FAT TISSUE LIPOGEMS LG PK 60 Lipogems Kit to obtain microfractured and purified ADSCs
HINTERMANN SPREADER INTEGRA 119654 The spreader allow to access most of the talar dome, in particular in case of posterior lesion
CUP CURETTE ARTHREX AR-8655-02 To remove the damaged cartilage and necrotic and sclerotic bone
CHONDRAL PICK 30° TIP / 60° TIP ARTHREX AR-8655-05
AR-8655-06
To perfrom microperforation at the level of the lesion, stimulating bleeding from the subchondral bone
SHAVER ARTHREX AR-7300SR To clean the joint and aspirate water

References

  1. D’Ambrosi, R., Maccario, C., Serra, N., Liuni, F., Usuelli, F. G. Osteochondral Lesions of the Talus and Autologous Matrix-Induced Chondrogenesis: Is Age a Negative Predictor Outcome?. Arthroscopy. 33 (2), 428-435 (2017).
  2. Becher, C., et al. T2-mapping at 3 T after microfracture in the treatment of osteochondral defects of the talus at an average follow-up of 8 years. Knee Surg. SportsTraumatol. Arthrosc. 23 (8), 2406-2412 (2015).
  3. Polat, G., et al. Long-term results of microfracture in the treatment of talus osteochondral lesions. Knee Surg. Sports Traumatol. Arthrosc. 24 (4), 1299-1303 (2016).
  4. van Bergen, C. J., et al. Arthroscopic treatment of osteochondral defects of the talus: outcomes at eight to twenty years of follow-up. J. Bone Joint Surg. Am. 95 (6), 519-525 (2013).
  5. van Eekeren, I. C., et al. Return to sports after arthroscopic debridement and bone marrow stimulation of osteochondral talar defects: a 5- to 24-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 24 (4), 1311-1315 (2016).
  6. D’Ambrosi, R., Maccario, C., Ursino, C., Serra, N., Usuelli, F. G. Combining Microfractures, Autologous Bone Graft, and Autologous Matrix-Induced Chondrogenesis for the Treatment of Juvenile Osteochondral Talar Lesions. Foot Ankle Int. 38 (5), 485-495 (2017).
  7. Usuelli, F. G., D’Ambrosi, R., Maccario, C., Indino, C., Manzi, L., Maffulli, N. Adipose-derived stem cells in orthopaedic pathologies. British Medical Bulletin. , (2017).
  8. Kim, Y. S., et al. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthr Cartilage. 24 (2), 237-245 (2016).
  9. Koh, Y. G., Choi, Y. J., Kwon, S. K., Kim, Y. S., Yeo, J. E. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 23 (5), 1308-1316 (2015).
  10. Zuk, P. A., et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13 (12), 4279-4295 (2002).
  11. Taléns-Visconti, R., et al. Human mesenchymal stem cells from adipose tissue: Differentiation into hepatic lineage. Toxicol. In Vitro. 21 (2), 324-329 (2007).
  12. Timper, K., et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341 (4), 1135-1140 (2006).
  13. Tremolada, C., Palmieri, G., Ricordi, C. Adipocyte transplantation and stem cells: plastic surgery meets regenerative medicine. Cell. Transplant. 19 (10), 1217-1223 (2010).
  14. Keramaris, N. C., et al. Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) in bone healing. Curr. Stem Cell. Res. Ther. 7 (4), 293-301 (2012).
  15. Leigheb, M., et al. Italian translation, cultural adaptation and validation of the American Orthopaedic Foot and Ankle Society’s (AOFAS) ankle-hindfoot scale. Acta Biomed. 87 (1), 38-45 (2016).
  16. Ware, J., Kosinski, M., Keller, S. D. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med. Care. 34 (3), 220-233 (1996).
  17. Hawker, G. A., Mian, S., Kendzerska, T., French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care (Hoboken). 63, S240-S252 (2011).
  18. Bergen, C. J., Gerards, R. M., Opdam, K. T., Terra, M. P., Kerkhoffs, G. M. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities. World. J. Orthop. 6 (11), 944-953 (2015).
  19. van Dijk, C. N., Reilingh, M. L., Zengerink, M., van Bergen, C. J. Osteochondral defects in the ankle: why painful?. Knee Surg. Sports Traumatol. Arthrosc. 18 (5), 570-580 (2010).
  20. Madry, H., van Dijk, C. N., Mueller-Gerbl, M. The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 18 (4), 419-433 (2010).
  21. Mintz, D. N., Tashjian, G. S., Connell, D. A., Deland, J. T., O’Malley, M., Potter, H. G. Osteochondral lesions of the talus: a new magnetic resonance grading system with arthroscopic correlation. Arthroscopy. 19 (4), 353-359 (2003).
  22. Leumann, A., et al. A novel imaging method for osteochondral lesions of the talus–comparison of SPECT-CT with MRI. Am. J. Sports Med. 39 (5), 1095-1101 (2011).
  23. Kim, Y. S., Park, E. H., Kim, Y. C., Koh, Y. G. Clinical outcomes of mesenchymal stem cell injection with arthroscopic treatment in older patients with osteochondral lesions of the talus. Am. J. Sports Med. 41 (5), 1090-1099 (2013).
  24. Kim, Y. S., Lee, H. J., Choi, Y. J., Kim, Y. I., Koh, Y. G. Does an injection of a stromal vascular fraction containing adipose-derived mesenchymal stem cells influence the outcomes of marrow stimulation in osteochondral lesions of the talus? A clinical and magnetic resonance imaging study. Am. J. Sports Med. 42 (10), 2424-2434 (2014).
  25. Kim, Y. S., Koh, Y. G. Injection of Mesenchymal Stem Cells as a Supplementary Strategy of Marrow Stimulation Improves Cartilage Regeneration After Lateral Sliding Calcaneal Osteotomy for Varus Ankle Osteoarthritis: Clinical and Second-Look Arthroscopic Results. Arthroscopy. 32 (5), 878-889 (2016).
  26. Kim, Y. S., Lee, M., Koh, Y. G. Additional mesenchymal stem cell injection improves the outcomes of marrow stimulation combined with supramalleolar osteotomy in varus ankle osteoarthritis: short-term clinical results with second-look arthroscopic evaluation. J. Exp. Orthop. 3 (1), 12 (2016).
  27. Hanke, C. W., Bernstein, G., Bullock, S. Safety of tumescent liposuction in 15,336 patients. National survey results. Dermatol Surg. 21 (5), 459-462 (1995).
  28. Illouz, Y. G. Complications of liposuction. Clin Plast Surg. 33 (1), 129-163 (2006).
  29. Dixit, V. V., Wagh, M. S. Unfavourable outcomes of liposuction and their management. Indian J Plast Surg. 46 (2), 377-392 (2013).
  30. Lehnhardt, M., Homann, H. H., Daigeler, A., Hauser, J., Palka, P., Steinau, H. U. Major and lethal complications of liposuction: review of 72 cases in Germany between 1998 and 2002. Plast Reconstr Surg. 121 (6), 396e-403e (2008).
  31. Usuelli, F. G., de Girolamo, L., Grassi, M., D’Ambrosi, R., Montrasio, U. A., Boga, M. All-Arthroscopic Autologous Matrix-Induced Chondrogenesis for the Treatment of Osteochondral Lesions of the Talus. Arthrosc Tech. 4 (3), e255-e259 (2015).
  32. Simonson, D. C., Roukis, T. S. Safety of ankle arthroscopy for the treatment of anterolateral soft-tissue impingement. Arthroscopy. 30 (2), 256-259 (2014).
  33. Suzangar, M., Rosenfeld, P. Ankle arthroscopy: is preoperative marking of the superficial peroneal nerve important?. J. Foot. Ankle Surg. 51 (2), 179-181 (2012).
  34. Kraeutler, M. J., et al. Current Concepts Review Update: Osteochondral Lesions of the Talus. Foot Ankle Int. 38 (3), 331-342 (2017).
  35. Looze, C. A., et al. Evaluation and Management of Osteochondral Lesions of the Talus. Cartilage. 8 (1), 19-30 (2017).
  36. Dragoo, J. L., et al. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng. 13 (7), 1615-1621 (2007).
  37. Lee, S. Y., Kim, W., Lim, C., Chung, S. G. Treatment of Lateral Epicondylosis by Using Allogeneic Adipose-Derived Mesenchymal Stem Cells: A Pilot Study. Stem Cells. 33 (10), 2995-3005 (2015).
  38. Feisst, V., Meidinger, S., Locke, M. B. From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning. 8, 149-162 (2015).

Play Video

Cite This Article
D’Ambrosi, R., Indino, C., Maccario, C., Manzi, L., Usuelli, F. G. Autologous Microfractured and Purified Adipose Tissue for Arthroscopic Management of Osteochondral Lesions of the Talus. J. Vis. Exp. (131), e56395, doi:10.3791/56395 (2018).

View Video