Summary

化学沉淀法合成铌2O5改性高比表面积镍催化剂

Published: February 19, 2018
doi:

Summary

本文介绍了化学沉淀法合成海绵状和褶皱状镍1-xxO 纳米粒子的一种协议。

Abstract

我们演示了一种用海绵状和褶皱状纳米结构合成镍x1-xO 催化剂的方法。通过改变 Nb: ni 比, 用化学沉淀法制备了一系列不同原子组成 (x = 0.03、0.08、0.15 和 0.20) 的镍x1 xO 纳米粒子。这些镍x1 xO 催化剂的特点是 x 射线衍射、x 射线光电子能谱和扫描电镜。研究发现镍的0.970.03O 和 ni0.92Nb0.08o 在 NiO 表面上的海绵状和褶皱状外观, 以及这些 Nix1 xO 催化剂的较大表面积, 与散装nio.镍0.920.08O 型催化剂可获得173米2/克的最大表面积。此外, 还研究了利用合成的 Ni0.920.08O 催化剂对木质素衍生化合物的催化 hydroconversion。

Introduction

纳米复合材料的制备因其在各个领域的重要应用而受到越来越多的关注。为制备镍铌 O 混合氧化物纳米粒子,1,2,3,4,5,6不同的方法已经开发, 如干混合法,7, 8蒸发方法、910111213溶胶凝胶法、14热分解法、15和自动燃烧。16在典型的蒸发方法9中, 含有适当数量的金属前体、硝酸镍六水合物和草酸铌铵的水溶液加热70摄氏度。在溶剂去除和进一步烘干和煅烧后, 得到了混合氧化物。这些氧化物催化剂对乙烷的氧化脱氢 (脱氢) 具有良好的催化活性和选择性, 这与在 NiO 晶格中加入铌阳离子引起的电子和结构重排有关。.11插入 Nb 会大幅减少亲氧的种类, 这是对乙烷12氧化反应的负责。因此, 这种方法的推广已经在制备不同类型的混合镍氧氧化物, 在那里我 = 李, 镁, 铝, Ga, Ti 和 Ta。13发现金属掺杂的变化可以改变 NiO 的 unselective 和亲氧自由基, 从而系统地调节脱氢的活性和对乙烷的选择性。然而, 通常这些氧化物的表面积相对较小 (< 100 米2/克), 这是由于扩展的相隔离和形成大 Nb2O5晶粒, 从而妨碍了它们在其他催化应用程序.

干混法, 又称固态磨削法, 是制备混合氧化物催化剂的另一种常用方法。由于催化材料是以无溶剂的方式获得的, 这种方法为混合氧化物的制备提供了一个有前景的绿色和可持续的替代方案。该方法获得的最高表面积为镍8020在煅烧温度为250摄氏度的172米2/克。8然而, 这种固态方法不可靠, 因为反应物在原子尺度上没有很好的混合。因此, 为了更好地控制化学均匀性和特定粒径分布和形貌, 目前仍在寻找其他合适的方法制备镍铌 O 混合氧化物纳米粒子。7

在纳米粒子发展的各种策略中, 化学沉淀是发展催化剂的一种有希望的方法, 因为它允许金属离子的完全沉淀。同时, 用该方法制备较高表面积的纳米粒子。为了提高镍铌纳米粒子的催化性能, 本文报道了化学沉淀法合成高表面积镍铌 o 型混合氧化物催化剂的协议。我们证明, 铌: 镍摩尔比是决定氧化物催化活性的关键因素, 对木质素衍生有机化合物的加氢脱氧。高铌: 镍比0.087 以上, 非活动 NiNb2O6种形成。Ni0.920.08O 具有最大的表面积 (173 米2/克), 它具有折叠状的薄片结构, 并显示了对甲醚到环己烷加氢脱氧的最佳活动和选择性。

Protocol

警告:针对本白皮书所述化学品的正确处理方法、性质和毒性, 请参阅有关材料安全数据表 (MSDS)。使用的一些化学物质是有毒和致癌的, 必须特别注意。纳米材料可能会造成安全隐患和健康影响。应避免吸入和皮肤接触。必须采取安全防范措施, 如在油烟机中进行催化剂合成和用高压釜反应器进行催化剂性能评估。必须佩戴个人防护设备。 1. 制备镍0.97铌0…

Representative Results

x 射线衍射 (XRD) 模式 (图 1和图 2), 下注表面积, 用氢 (H2-TPR) 的温度编程还原氢, 扫描电子显微镜 (SEM) 配有能量色散 X 射线 (EDX) 分析仪、X 射线光电子能谱 (XPS) 是为纳米 NiO、镍铌 O 和 Nb2O5氧化物17 (图 3和图 4) 收集的。采用 XRD、SEM 和 XPS 等方…

Discussion

制备镍掺杂块状铌氧化物纳米微粒的常用方法之一是旋转蒸发法。9通过在旋转蒸发过程中采用各种压力和温度条件, 将镍铌 O 颗粒的沉淀与溶剂的缓慢去除进行贸易。与旋转蒸发法相比, 本研究报告的化学沉淀法在制备纳米微粒时越来越受到重视, 因此不需要去除溶剂。在典型的化学沉淀法中制备催化剂, 在长期的金属盐溶液中加入碱性溶液是必要的。21在我们?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢中国科学技术部国家重点研究 & 开发项目 (2016YFB0600305)、国家自然科学基金 (21573031 和21373038号) 提供的财政支持, 项目为大连市 (2016RD09) 和香港科技高等教育学院优秀人才 (SG1617105 和 SG1617127)。

Materials

Niobium(V) oxalate hydrate, 98% Alfa L04481902
Nickel nitrate hexahydrate, 99% Aladdin N108891
Sodium hydroxide, 98% Aladdin S111501
Ammonium hydroxide, 23-25% Aladdin A112077
Anisole, 99% Sinopharm 81001728
Diphenyl ether, 98% Aladdin D110644
Phenol, 98% Sinopharm 100153008
2-Methoxyphenol, 98% Sinopharm 30114526
Vanillin, 99.5% Sinopharm 69024316
Potassium hydroxide, AR Aladdin P112284
N,N-Dimethylformamide, 99.5% Sinopharm 40016462
2-Bromoacetophenone,98% Aladdin B103328
Diethyl ether,99.5% Sinopharm 10009318
Decane,98% Aladdin D105231
Dodecane,99% Aladdin D119697
Niobic acid CBMM 1313968
Heating and Drying Oven DHG Series (shanghai jinghong laboratory instrument co. ltd)
Autoclave Reactor CJF-0.05—0.1L (Dalian Tongda Equipment Technology Development Co., Ltd)
Tube furnace SK2-1-10/12 (Luoyang Huaxulier Electric Stove Co., Ltd)
Heating magnetic stirrer DF-101 (Yu Hua Instrument Co. Ltd.)
Rotary evaporator RE-3000A (Shanghai Yarong Biochemical Instrument Factory)
Synthetic air
Hydrogen gas
Argon gas

References

  1. Zhou, Y., Yang, M., Sun, K., Tang, Z., Kotov, N. A. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J. Am. Chem. Soc. 132 (17), 6006-6013 (2010).
  2. Zhou, Y., et al. Optical Coupling Between Chiral Biomolecules and Semiconductor Nanoparticles: Size-Dependent Circular Dichroism Absorption. Angew. Chem. Int. Ed. 50, 11456-11459 (2011).
  3. Li, Z., et al. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 134 (7), 3322-3325 (2012).
  4. Zhu, Z., et al. Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS Nano. 6 (3), 2326-2332 (2012).
  5. Liu, W., et al. Gold nanorod@chiral mesoporous silica core-shell nanoparticles with unique optical properties. J. Am. Chem. Soc. 135 (26), 9659-9664 (2013).
  6. Han, B., Zhu, Z., Li, Z., Zhang, W., Tang, Z. Conformation Modulated Optical Activity Enhancement in Chiral Cysteine and Au Nanorod Assemblies. J. Am. Chem. Soc. 136, 16104-16107 (2014).
  7. Rao, C. N. R., Gopalakrishnan, J. . New Directions in Solid State Chemistry. , (1989).
  8. Zhu, H., Rosenfeld, D. C., Anjum, D. H., Caps, V., Basset, J. -. M. Green Synthesis of Ni-Nb Oxide Catalysts for Low-Temperature Oxidative Dehydrogenation of Ethane. ChemSusChem. 8, 1254-1263 (2015).
  9. Heracleous, E., Lemonidou, A. A. Ni-Nb-O Mixed Oxides as Highly Active and Selective Catalysts for Ethene Production via Ethane Oxidative Dehydrogenation. Part I: Characterization and Catalytic Performance. J. Cat. 237, 162-174 (2006).
  10. Savova, B., Loridant, S., Filkova, D., Millet, J. M. M. Ni-Nb-O Catalysts for Ethane Oxidative Dehygenation. Appl. Catal. A. 390 (1-2), 148-157 (2010).
  11. Heracleous, E., Delimitis, A., Nalbandian, L., Lemonidou, A. A. HRTEM Characterization of the Nanostructural Features formed in Highly Active Ni-Nb-O Catalysts for Ethane ODH. Appl. Catal. A. 325 (2), 220-226 (2007).
  12. Skoufa, Z., Heracleous, E., Lemonidou, A. A. Unraveling the Contribution of Structural Phases in Ni-Nb-O mixed oxides in Ethane Oxidative Dehydrogenation. Catal. Today. 192 (1), 169-176 (2012).
  13. Heracleous, E., Lemonidou, A. A. Ni-Me-O Mixed Metal Oxides for the Effective Oxidative Dehydrogenation of Ethane to Ethylene – Effect of Promoting Metal Me. J. Cat. 270, 67-75 (2010).
  14. Zhu, H., et al. Nb Effect in the Nickel Oxide-Catalyzed Low-Temperature Oxidative Dehydrogenation of Ethane. J. Cat. 285, 292-303 (2012).
  15. Sadovskaya, E. M., et al. Mixed Spinel-type Ni-Co-Mn Oxides: Synthesis, Structure and Catalytic Properties. Catal. Sustain. Energy. 3, 25-31 (2016).
  16. Alvarez, J., et al. Ni-Nb-Based Mixed Oxides Precursors for the Dry Reforming of Methane. Top. Catal. 54, 170-178 (2011).
  17. Jin, S., Guan, W., Tsang, C. -. W., Yan, D. Y. S., Chan, C. -. Y., Liang, C. Enhanced hydroconversion of lignin-derived oxygen-containing compounds over bulk nickel catalysts though Nb2O5 modification. Catal. Lett. 147, 2215-2224 (2017).
  18. Taghavinezhad, P., Haghighi, M., Alizadeh, R. CO2/O2-oxidative dehydrogenation of ethane to ethylene over highly dispersed vanadium oxide on MgO-promoted sulfated-zirconia nanocatalyst: Effect of sulfation on catalytic properties and performance. Korean J. Chem. Eng. 34 (5), 1346-1357 (2017).
  19. Muralidharan, G., Subramanian, L., Nallamuthu, S. K., Santhanam, V., Kumar, S. Effect of Reagent Addition Rate and Temperature on Synthesis of Gold Nanoparticles in Microemulsion Route. Ind. Eng. Chem. Res. 50 (14), 8786-8791 (2011).
  20. Sosa, Y. D., Rabelero, M., Treviño, M. E., Saade, H., López, R. G. High-Yield Synthesis of Silver Nanoparticles by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion. J. Nanomater. , 1-6 (2010).
  21. Morterra, C., Cerrato, G., Pinna, F. Infrared spectroscopic study of surface species and of CO adsorption: a probe for the surface characterization of sulfated zirconia catalysts. Spectrochim. Acta. A Molecul. Biomolecul. Spectrosc. 55, 95-107 (1998).
  22. Yang, F., Wang, Q., Yan, J., Fang, J., Zhao, J., Shen, W. Preparation of High Pore Volume Pseudoboehmite Doped with Transition Metal Ions through Direct Precipitation Method. Ind. Eng. Chem. Res. 51 (47), 15386-15392 (2012).
  23. Saleh, R., Djaja, N. F. Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta. A Molecul. Biomolecul. Spectrosc. 130, 581-590 (2014).
  24. Ertis, I. F., Boz, I. Synthesis and Characterization of Metal-Doped (Ni, Co, Ce, Sb) CdS Catalysts and Their Use in Methylene Blue Degradation under Visible Light Irradiation. Modern Research in Catalysis. 6, 1-14 (2017).
  25. Jin, S., et al. Cleavage of Lignin-Derived 4-O-5 Aryl Ethers over Nickel Nanoparticles Supported on Niobic Acid-Activated Carbon Composites. Ind. Eng. Chem. Res. 54 (8), 2302-2310 (2015).
  26. Rojas, E., Delgado, J. J., Guerrero-Pérez, M. O., Bañares, M. A. Performance of NiO and Ni-Nb- O Active Phases during the Ethane Ammoxidation into Acetonitrile. Catal. Sci. Technol. 3 (12), 3173-3182 (2013).
  27. Lee, S. -. H., et al. Raman Spectroscopic Studies of Ni-W Oxide Thin Films. Solid State Ionics. 140 (1), 135-139 (2001).
  28. Mondal, A., Mukherjee, D., Adhikary, B., Ahmed, M. A. Cobalt nanoparticles as recyclable catalyst for aerobic oxidation of alcohols in liquid phase. J. Nanopart. Res. 18 (5), 1-12 (2016).
  29. Wang, K., Yang, L., Zhao, W., Cao, L., Sun, Z., Zhang, F. A facile synthesis of copper nanoparticles supported on an ordered mesoporous polymer as an efficient and stable catalyst for solvent-free sonogashira coupling Reactions. Green Chem. 19, 1949-1957 (2017).
  30. Song, Y., et al. High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode. Chemistry Select. 1, 6055-6061 (2016).
check_url/56987?article_type=t

Play Video

Cite This Article
Li, C., Jin, S., Guan, W., Tsang, C., Chu, W., Lau, W. K., Liang, C. Chemical Precipitation Method for the Synthesis of Nb2O5 Modified Bulk Nickel Catalysts with High Specific Surface Area. J. Vis. Exp. (132), e56987, doi:10.3791/56987 (2018).

View Video