Summary

구조와 계면 물 검색과 터널링 현미경 분광학의 역학 조사

Published: May 27, 2018
doi:

Summary

여기, 우리는 프로토콜 구조와 계면 물 submolecular 해상도 이미징, 분자 조작 및 단일 결합 진동 분광학 원자 규모에서의 역학 조사를 제시.

Abstract

물/고체 인터페이스 유비 쿼터 스 되 고 많은 환경, 생물, 그리고 기술 과정에 중요 한 역할. 내부 구조를 해결 하 고 고체 표면에 흡착 하는 물 분자의 수소 결합 (H-본드) 역학 조사는 큰 도전 빛 질량과 수소의 작은 크기 때문에 남아 있는 물 과학의 근본적인 문제. 터널링 현미경 (STM) 검색 하위 Ångström 공간 해상도, 단일 결합 진동 감도, 및 원자/분자 조작 기능 덕분에 이러한 문제를 공격 하기 위한 유망한 도구입니다. Cl 종료 팁과 물 분자에서 제자리에서 Au (111)에 주입 하 여 조작 하는 샘플의 설계 실험 시스템 구성-지원 NaCl(001) 표면. 물 분자의 본질적인 국경 궤도 유지 됩니다 그래서 격리 NaCl 영화 전자 금속 기판에서 물을 분리. Cl-팁 팁 물 커플링을 통해 페르미 준위 (EF)의 근접에 물의 궤도 게이팅 뿐만 아니라 단일 물 분자의 조작을 쉽게 합니다. 이 종이 submolecular 해상도 이미징, 분자/원자 조작 및 계면 물의 단일 결합 진동 분광학의 자세한 방법을 설명합니다. 이러한 연구는 원자 규모에서 H 접착 시스템을 조사 하 고 새로운 경로 열어.

Introduction

고체 물질의 표면 물의 상호 작용 이질적인 촉매 작용, photoconversion, 전기 화학, 부식, 윤 활 외. 다양 한 표면 반응 프로세스에 관련 된 1 , 2 , 3 일반적으로 계면 물, 분 광 및 회절 조사 기법 상용 되, 적외선, 라만 분광학 등 합계 주파수 발생 (SFG), x 선 회절 (XRD), 핵 자기 공명 (NMR), 중성자 산란4,,56,,78. 그러나, 이러한 방법은 공간적 해상도, 스펙트럼 확장 하 고 평균 효과의 한계에서 고통.

STM은 하위 Ångström 해상도, 원자 조작 및 단일 결합 진동 감도9,10,,1112 를 결합 하 여 이러한 한계를 극복 하기 위해 유망한 기술 , 13 , 14.이 세기의 시작부터 STM 광범위 하 게 적용 된 구조와 고체 표면3,15,,1617, 물의 역학 조사 18,,1920. 또한, 진동 분광학 STM에 따라 두 번째 파생 차동 터널링 계수에서 얻을 수 (d2나 / dV2), 탄력 전자 터널링 분광학 (IETS)로 알려진. 그러나, 내부 구조, H-본드 방향, 해결 하 고 습득 물의 안정적인 진동 분광학은 여전히 도전. 주요 어려움은 물이 가까운 쉘 분자, 누구의 국경 궤도 EF에서 멀리 떨어져 있는, 따라서 STM 팁 으로부터 전자 거의 가난한 신호 대 잡음 비율에 지도 하는 물 분자 공명 상태에 터널링 할 수 있습니다. 분자 이미징 및 진동 분광학.

Cl 종료 팁 (그림 1), 5 K에서 기본 압력으로 초고 진공 (UHV) 환경에서 수행 되는 STM에 의해 원자 규모 조사에 대 한 이상적인 시스템을 제공 하는 지원 되는 Au NaCl(001) 필름에 흡착 물 8 × 10-11 mbar 보다 더 나은. 한 손으로, 격리 NaCl 영화 물의 네이티브 국경 궤도 유지 됩니다 하 고 분자 공 진 상태에 있는 전자의 수명을 연장 Au 기판에서 전자적으로 물 분자를 분리. 다른 한편으로, STM 팁에는 팁-물 커플링, 특히 때 Cl 원자와 팁은 공업화를 통해 EF 향해 물 국경 궤도 조정 효과적으로 수 있습니다. 이러한 주요 단계 고해상도 궤도 이미징 및 물 단위체 및 클러스터의 진동 분광학을 사용합니다. 또한, 물 분자는 부정적으로 위탁 된 Cl-팁 및 물 사이 강한 정전기 상호 작용으로 인해 잘 제어 방식으로 조작할 수 수 있습니다.

이 보고서에서 샘플 및 STM 조사에 대 한 Cl 종료 팁의 준비 절차는 설명 섹션 1과 2에서에서 자세히 각각. 섹션 3, 우리는 궤도 이미징 기술, 물 단량체와 tetramer O H 방향을는 해결 됩니다 설명 합니다. 팁 향상 IETS 산소-수소 스트레칭 레드 시프트에서 높은 정확도와 단일 결합 제한에서 물 분자의 진동 모드와 H 결합 강도의 결정의 탐지를 허용 하는 섹션 4에 도입 물의 주파수입니다. 섹션 5, 우리는 물 tetramer를 건설 하 고 제어 팁 조작 전환 수 어떻게 표시 됩니다. 궤도 이미징, 분광학, 및 조작 기법을 바탕으로, 동위 원소 대체 실험 양자 터널링 등 0 포인트 모션 계면 물에 양성자의 양자 특성을 수행할 수 있습니다.

Protocol

참고: 실험에서 수행 됩니다 (그림 1a) Au 지원 NaCl(001) 필름에 흡착 물 분자 5 K에 Nanonis 전자 컨트롤러를 장착 한 초고 진공 (UHV) 극저온 STM와. 1입니다. 실험 샘플의 제조 Au(111) 단 결정을 청소 ~ 10-7 mbar의 압력 가스 라인을 펌프 하 고 Ar 가스와 함께 가스 라인을 플러시. 세 번의 펌프/플러시 사이클을 통해 ?…

Representative Results

그림 1 STM 실험 설치의 개략 도를 를 보여줍니다. 첫째, Au(111) 기판은 스퍼터 링 및 UHV 챔버에 사이클 어 닐 링에 의해 청소 된다. 깨끗 한 Au(111) 샘플 표면 층의 원자는 hcp와 헤링 본 구조 ( 그림 1b의 삽입)을 형성 하는 fcc 사이트를 차지 22 × √3 재건된 표면을, 보여 줍니다. NaCl bilayer 제도 (<strong class="xfig…

Discussion

내부 구조, 역학, 그리고 수소,도 자유에 특별 한 관심을 지불, 고체 표면에 흡착 하는 물 분자의 진동 분광학을 일부 실험 단계가 될 것입니다 중요 한 중요성의 다음 단락에서 설명합니다.

물 분자의 궤도 영상 두 가지 주요 단계에 따라 이루어집니다. 첫째, 단 열 NaCl 영화 분리 Au 기판에서 전자 물 두 번째 팁 물 결합 통해 STM 팁의 효과 게이팅 궤도. Bilayer NaCl 영화 Au(111) 기판…

Disclosures

The authors have nothing to disclose.

Acknowledgements

이 작품은 국가 키 R & D 프로그램 보조금 번호 2016YFA0300901 2016YFA0300903 및 2017YFA0205003에서, 보조금 번호 11634001, 11290162/A040106에서 중국의 국가 자연과학 기초에 의해 자금을. Y.J. 고유 영 학자와 청 홍콩 젊은 학자 프로그램에 대 한 국립 과학 기금 지원을 인정 한다. J. G. 인정 혁신적인 재능을 위한 국가 박사 프로그램에서 지원 합니다.

Materials

Au(111) single crystal MaTeck NA
NaCl Sigma Aldrich 450006
Water, deuterium-depleted  Sigma Aldrich 195294
Deuterium oxide  Sigma Aldrich 364312
Sealed-off glass-UHV adapters MDC vacuum products 46300
Diaphragm-sealed valve any NA
Bellows-sealed valve any NA
Leak valve Kurt J. Lesker  NA
Scanning tunneling microscopy CreaTec NA
Electronic controller. Nanonis  NA
Tungsten wire any diameter:0.3 mm; purity: 99.95%

References

  1. Thiel, P. A., Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7 (6-8), 211-385 (1987).
  2. Henderson, M. A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46 (1-8), 1-308 (2002).
  3. Hodgson, A., Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64 (9), 381-451 (2009).
  4. Brougham, D. F., Caciuffo, R., Horsewill, A. J. Coordinated proton tunnelling in a cyclic network of four hydrogen bonds in the solid state. Nature. 397 (6716), 241-243 (1999).
  5. Andreani, C., Colognesi, D., Mayers, J., Reiter, G. F., Senesi, R. Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering. Adv. Phys. 54 (5), 377-469 (2005).
  6. Shen, Y. R., Ostroverkhov, V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106 (4), 1140-1154 (2006).
  7. Soper, A. K., Benmore, C. J. Quantum differences between heavy and light water. Phys. Rev. Lett. 101 (6), 065502 (2008).
  8. Kimmel, G. A., et al. Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): Anisotropy and the hydrogen-bonding network. J. Phys. Chem. Lett. 3 (6), 778-784 (2012).
  9. Eigler, D. M., Schweizer, E. K. Positioning single atoms with as a scanning tunneling microscope. Nature. 344 (6266), 524-526 (1990).
  10. Stroscio, J. A., Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science. 254 (5036), 1319-1326 (1991).
  11. Stipe, B. C., Rezaei, M. A., Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science. 280 (5370), 1732-1735 (1998).
  12. Ho, W. Single-molecule chemistry. J. Chem. Phys. 117 (24), 11033-11061 (2002).
  13. Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A., Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94 (2), 026803 (2005).
  14. Weiss, C., Wagner, C., Temirov, R., Tautz, F. S. Direct imaging of intermolecular bonds in scanning tunneling microscopy. J. Am. Chem. Soc. 132 (34), 11864-11865 (2010).
  15. Verdaguer, A., Sacha, G. M., Bluhm, H., Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106 (4), 1478-1510 (2006).
  16. Michaelides, A., Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nat. Mater. 6 (8), 597-601 (2007).
  17. Feibelman, P. J. The first wetting layer on a solid. Phys. Today. 63 (2), 34-39 (2010).
  18. Carrasco, J., Hodgson, A., Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 11 (8), 667-674 (2012).
  19. Kumagai, T. Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy. Prog. Surf. Sci. 90 (3), 239-291 (2015).
  20. Maier, S., Salmeron, M. How does water wet a surface. Acc. Chem. Res. 48 (10), 2783-2790 (2015).
  21. JoVE Science Education Database. . Essentials of Organic Chemistry. Degassing Liquids with Freeze-Pump-Thaw Cycling. JoVE. , (2017).
  22. Guo, J., et al. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 13 (2), 184-189 (2014).
  23. Guo, J., et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science. 352 (6283), 321-325 (2016).
  24. Meng, X., et al. Direct visualization of concerted proton tunnelling in a water nanocluster. Nat. Phys. 11 (3), 235-239 (2015).
  25. Thuermer, K., Nie, S. Formation of hexagonal and cubic ice during low-temperature growth. Proc. Natl. Acad. Sci. U.S.A. 110 (29), 11757-11762 (2013).
  26. Shiotari, A., Sugimoto, Y. Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat. Commun. 8, (2017).
  27. Terada, Y., Yoshida, S., Takeuchi, O., Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy. Nat. Photonics. 4 (12), 869-874 (2010).
  28. Yoshida, S., et al. Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling microscopy. Nat. Nanotechnol. 9 (8), 588-593 (2014).
  29. Mamin, H. J., et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science. 339 (6119), 557-560 (2013).
  30. Staudacher, T., et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science. 339 (6119), 561-563 (2013).
  31. Aslam, N., et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science. 357 (6346), 67-71 (2017).

Play Video

Cite This Article
Guo, J., You, S., Wang, Z., Peng, J., Ma, R., Jiang, Y. Probing the Structure and Dynamics of Interfacial Water with Scanning Tunneling Microscopy and Spectroscopy. J. Vis. Exp. (135), e57193, doi:10.3791/57193 (2018).

View Video