Summary

Protokol for mikroRNA overførsel i knoglemarv-afledte hæmatopoietisk stamceller til at aktivere celle Engineering kombineret med magnetisk målretning

Published: June 18, 2018
doi:

Summary

Denne protokol illustrerer en sikker og effektiv procedure for at ændre CD133+ hæmatopoietisk stamceller. Den præsenteres ikke-virale, magnetiske polyplex-baserede tilgang kan danne grundlag for optimering af terapeutisk stamceller følger så godt som overvågning administreret celle produkt via magnetisk resonans.

Abstract

Mens CD133+ hæmatopoietisk stamceller (SCs) har vist sig for at give store potentiale inden for regenerativ medicin, deres lave opbevaring satser efter indsprøjtning i skadet væv samt de observerede massive celle død priser føre til meget begrænset terapeutiske virkninger. For at overvinde disse begrænsninger, forsøgte vi at etablere et ikke-virale baseret protokol for egnet celle engineering forud for deres administration. Ændring af menneskelig CD133+ udtrykker SCs ved hjælp af mikroRNA (miR) indlæses magnetiske polyplexes blev behandlet med hensyn til optagelsen effektivitet og sikkerhed samt målretning potentialet i cellerne. Afhængige af vores protokol, vi kan opnå høj miR optagelse priser af 80-90%, mens CD133+ stamceller egenskaber forbliver upåvirket. Desuden tilbyder disse modificerede celler mulighed for magnetisk målretning. Vi beskriver her en sikker og meget effektiv procedure for ændring af CD133+ SCs. Vi forventer, at denne fremgangsmåde til at give en standardteknologi for optimering af terapeutisk stamceller effekter og for overvågning af administreret celle produktet via magnetisk resonans imaging (MR).

Introduction

CD133+ SCs repræsenterer en heterogen stilk og stamfader celle population med lovende potentiale for regenerativ medicin. Deres hæmatopoietisk, endotel og myogenic differentiering potentielle1,2,3 sætter CD133+ -celler, f.eks., at bidrage til neovascularization processer gennem differentiering i nyligt danner fartøjer og aktivering af pro-angiogene signalering af paracrine mekanismer4,5,6,7.

Trods deres store potentiale demonstreret i mere end 30 godkendte kliniske forsøg (ClinicalTrails.gov), er deres terapeutiske resultat stadig under kontroversiel diskussion4. Faktisk, en klinisk anvendelse af SCs er hæmmet af lav fastholdelse i orgel af interesse og massive oprindelige celle død5,8,9. Yderligere engineering af CD133+ SCs forudgående transplantation kunne hjælpe med at overvinde disse udfordringer.

En forudsætning for en effektiv celleterapi ville være en reduktion af den massive indledende celledød at forbedre engraftment terapeutiske relevante celler10. Aktuelle undersøgelser viste en enorm celletab 90-99% i stærkt perfunderet organer som hjerne og hjerte i løbet af de første 1-2 h, uafhængigt af den transplanterede celletype eller ansøgning rute11,12,13 ,14,15,16,17,18,19,20,21. SC mærkning ved hjælp af magnetiske nanopartikler (MNPs) gør det muligt for en nyskabende non-invasiv strategi til target-cellerne til webstedet af interesse22,23,24,25,26 og samtidig tillader celle overvågning ved hjælp af Mr27 og magnetiske partikel imaging (MPI). Den mest effektive i vivo undersøgelser udlignende magnetiseret celle målretning brugte celle opbevaring efter lokal administration frem for celle vejledning efter intravenøs injektion23,24,28 . Derfor designet vores gruppe en levering system bestående af superparamagnetisk jernoxid nanopartikler29. Med denne teknik, CD133+ SCs og menneskelige umbilical vene endothelial celler (HUVECs) kunne effektivt være målrettet, som det fremgår af in vitro- forsøg30,31.

En anden hurdle for SC terapier er fjendtlige inflammatoriske miljøet i de berørte væv efter transplantation, som bidrager til den første celle død32. Ud over flere præ conditioning undersøgelser blev anvendelsen af terapeutiske relevante miRs testet33; Det er blevet med held påvist, at anti-apoptotiske miRs hæmme apoptose i vitro og øge celle engraftment i vivo33. Disse små molekyler, der består af 20 – 25 nukleotider, spiller en afgørende rolle som posttranskriptionelle modulatorer af messenger RNA’er (mRNAs), og dermed påvirke stamcelle skæbne og opførsel34. Derudover eksogen indførelsen af miRs undgå uønskede stabile integration i vært genom34.

Nuværende forsøg for effektiv indførelse af nukleinsyrer (NAs) i primære SCs er hovedsagelig baseret på rekombinant virus8,35. Trods den høje Transfektion effektivitet præsenterer rekombinant virus manipulation en væsentlig hindring for en bænken til bedside oversættelse, fx, ukontrollabel genekspression, patogenicitet, immunogenicitet og pattedyrsceller mutagenese35 ,36. Ikke-viral levering systemer såsom polymer-baserede konstruktioner er derfor kritisk at udvikle. Blandt dem, polyethylenimine (PEI) repræsenterer en gyldig levering køretøj tilbyder fordele for miRs som NA kondens at beskytte mod nedbrydning, cellulære optagelse, og intracellulære frigivelse gennem endosomal undslippe37,38. Desuden demonstreret miR-PEI komplekser en høj biokompatibilitet i kliniske forsøg39. Derfor vores levering system består af en biotinylated forgrenet 25 kDa PEI bundet til en streptavidin-belagt MNP-core30,31,40.

I dette manuskript, præsenterer vi en omfattende protokol beskriver de manuelle isolation af CD133+ SC fra menneskelige knoglemarv (BM) donation med en detaljeret beskrivelse af produktets SC og (ii) en effektiv og blid Transfektion strategi af en magnetisk ikke-virale polymer-baserede levering system for gensplejsning af CD133+ SCs bruger miRs. CD133+ SCs er isoleret og magnetisk beriget fra menneskelige brystbenet BM aspirates ved hjælp af en overflade antistof-baserede magnetiske-aktiveret celle sortering (MLA) system. Bagefter, cellernes levedygtighed samt celle renhed er analyseret ved hjælp af flowcytometri. Efterfølgende, PEI-miR-MNP komplekser er forberedt og CD133+ SCs er transfekteret. 18 h efter Transfektion, optagelse effektiviteten og virkningen af Transfektion på SC markør udtryk og celle levedygtighed er analyseret. Desuden udføres evaluering af intracellulær fordelingen af Transfektion komplekse forbindelser, ved hjælp af firefarvet mærkning og struktureret belysning mikroskopi (SIM).

Protocol

Brystbenet menneskelige BM for celle isolation blev indhentet fra informeret donorerne, der gav deres skriftlige samtykke til at bruge deres prøver til forskning efter Helsinki-erklæringen. Det etiske udvalg af Universitet i Rostock har godkendt den præsenteres undersøgelse (reg. nr. A 2010 23, forlænget i 2015). 1. celle forberedelse Bemærk: Brug heparin natrium (250 IU/mL BM) at forhindre koagulation for BM undersøgelse. CD133+ …

Representative Results

Den præsenterede protokol beskriver en manuel isolation og magnetiske berigelse af menneskelige BM-afledt CD133+ SCs med en efterfølgende virus uafhængige celle engineering strategi, som en non-invasiv teknologi til i vitro celle manipulation og i vivo overvågning værktøj. Denne tre-trins afsondrethed teknologi tillader en adskillelse af multinationale selskaber fra de præ-fordøjet brystbenet…

Discussion

I de seneste år, CD133+ SCs er opstået som en lovende celle population for SC-baserede behandlinger som det fremgår af flere fase I, II og III kliniske forsøg43,44,45,46, 47 , 48 , 49 , 50 , 51 ,

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af det føderale ministerium for uddannelse og forskning Tyskland (FKZ 0312138A og FKZ 316159), den stat Mecklenburg-Vorpommern med EU ‘s strukturfonde (ESF/IVWM-B34-0030/10 og ESF/IVBM-B35-0010/12) og DFG (DA1296/2-1), den Tyske Heart Foundation (F/01/12), BMBF (VIP + 00240) og den FUGTIGE Foundation. Derudover understøttes F.H. og P.M. af FORUN Program af Rostock University Medical Centre (889001).

Materials

7-AAD BD Biosciences 559925
Acetic Acid with Methylene Blue Stemcell Technologies 7060 3%
anti-CD133/2-PE (clone: 293C3) Miltenyi Biotec GmbH 130-090-853
anti-CD34-FITC (clone: AC136) Miltenyi Biotec GmbH 130-081-001
anti-CD45-APC-H7 (clone: 2D1) BD Biosciences 560178
rhodamine dye; Atto 565 dye conjugated to biotin ATTO-TEC GmbH AD 565-71
BD FACS LSRII flow cytometer BD Biosciences
BD FACSDiva Software 6.1.2 BD Biosciences
BSA Sigma-Aldrich GmbH A7906
CD133 antibody-linked superparamagnetic iron dextran particles; CD133 MicroBead Kit Miltenyi Biotec GmbH 130-097-049
collagenase B Roche Diagnostics GmbH 11088831001
counting chamber Paul Marienfeld GmbH & Co. KG
Cyanine 3 dye labelled precursor miR; Cy3 Dye-Labeled Pre-miR Negative Control #1 Ambion AM17120
Cyanine 5 dye miR labelling kit; Cy5 dye Label IT miRNA Labeling Kit Mirus Bio MIR 9650
DNAse I Roche Diagnostics GmbH 10104159001 (100 U/mL)
ELYRA PS.1 LSM 780 confocal microscope Carl Zeiss Jena GmbH
FcR Blocking Reagent, human Miltenyi Biotec GmbH 130-059-901
bright green protein labeling kit; Oregon Green 488 Protein Labeling Kit Thermo Fisher Scientific O10241
aqueous mounting medium; Fluoroshield Sigma-Aldrich GmbH F6182
density gradient centrifugation tube; Leukosep Centrifuge Tube Greiner Bio-One 89048-932
MACS magnet holder; MACS MultiStand Miltenyi Biotec GmbH 130-042-303
MACS pre-separation filter Miltenyi Biotec GmbH 130-041-407 30 µm
MACS separation column (MS / LS) Miltenyi Biotec GmbH 130-042-201 / 130-042-401
MACS permanent magnet; MACS Separator Miltenyi Biotec GmbH 130-042-302
Millex-HV PVDF Filter Merck SLHV013SL 0.45 μm
mouse IgG 2b-PE Miltenyi Biotec GmbH 130-092-215
amine reactive dye; Near-IR LIVE/DEAD Fixable Dead Cell Stain Kit Thermo Fisher Scientific L10119
human lymphocyte separating medium; Pancoll Pan Biotech GmbH P04-60500 density: 1.077 g/mL
PBS Pan Biotech GmbH P04-53500 without Ca and Mg
PEI Sigma-Aldrich GmbH 408727 branched; 25 kDa
Penicillin/Streptomycin Thermo Fisher Scientific 15140122 100 U/mL, 100 μg/mL
PFA Merck Schuchardt OHG 1040051000
unlabelled precursor miR; Pre-miR miRNA Precursor Negative Control #1 Ambion AM17110
RBC lysis buffer eBioscience 00-4333-57
RNAse decontamination solution; RNaseZap Thermo Fisher Scientific AM9780
human lymphocyte medium; Roswell Park Memorial Institute (RPMI) 1640 medium Pan Biotech GmbH P04-16500
recombinant human cytokine supplement; StemSpan CC100 Stemcell Technologies 2690
serum-free haematopoietic cell expansion medium; StemSpan H3000 Stemcell Technologies 9800
Streptavidin MagneSphere Paramagnetic Particles Promega Corporation Z5481
Trypan Blue solution Sigma-Aldrich GmbH T8154 0.4 %
UltraPure EDTA Thermo Fisher Scientific 15575020 0.5 M; pH 8.0
ZEN2011 software Carl Zeiss Jena GmbH
NanoDrop 1000 Spectrophotometer Thermo Fisher Scientific
Sonorex RK 100 SH sonicating water bath Bandelin electronic Ultrasonic nominal output: 80 W; Ultrasonic frequency: 35 kHz

References

  1. Meregalli, M., Farini, A., Belicchi, M., Torrente, Y. CD133(+) cells isolated from various sources and their role in future clinical perspectives. Expert opinion on biological therapy. 10 (11), 1521-1528 (2010).
  2. Lee, S., Yoon, Y. -. S. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. British journal of pharmacology. 169 (2), 290-303 (2013).
  3. Beksac, M., Preffer, F. Is it time to revisit our current hematopoietic progenitor cell quantification methods in the clinic?. Bone marrow transplantation. 47 (11), 1391-1396 (2012).
  4. Bongiovanni, D., et al. The CD133+ cell as advanced medicinal product for myocardial and limb ischemia. Stem cells and development. 23 (20), 2403-2421 (2014).
  5. Wang, X., et al. The Clinical Status of Stem Cell Therapy for Ischemic Cardiomyopathy. Stem cells international. 2015, 135023 (2015).
  6. Ma, N., et al. Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells. Cardiovascular research. 71 (1), 158-169 (2006).
  7. Rafii, S., Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature medicine. 9 (6), 702-712 (2003).
  8. Wang, D., Gao, G. State-of-the-art human gene therapy: part I. Gene delivery technologies. Discovery medicine. 18 (97), 67-77 (2014).
  9. Sart, S., Ma, T., Li, Y. Preconditioning stem cells for in vivo delivery. BioResearch open access. 3 (4), 137-149 (2014).
  10. Liu, J., et al. Early stem cell engraftment predicts late cardiac functional recovery: preclinical insights from molecular imaging. Circulation. Cardiovascular imaging. 5 (4), 481-490 (2012).
  11. Lang, C., et al. In vivo comparison of the acute retention of stem cell derivatives and fibroblasts after intramyocardial transplantation in the mouse model. European journal of nuclear medicine and molecular imaging. 41 (12), 2325-2336 (2014).
  12. Goussetis, E., et al. Intracoronary infusion of CD133+ and CD133-CD34+ selected autologous bone marrow progenitor cells in patients with chronic ischemic cardiomyopathy: cell isolation, adherence to the infarcted area, and body distribution. Stem cells. 24 (10), 2279-2283 (2006).
  13. Caveliers, V., et al. In vivo visualization of 111In labeled CD133+ peripheral blood stem cells after intracoronary administration in patients with chronic ischemic heart disease. Q J Nucl Med Mol Imaging. 51 (1), 61-66 (2007).
  14. Terrovitis, J. V., Smith, R. R., Marbán, E. Assessment and optimization of cell engraftment after transplantation into the heart. Circulation research. 106 (3), 479-494 (2010).
  15. Rosado-de-Castro, P. H., et al. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regenerative medicine. 8 (2), 145-155 (2013).
  16. Kang, W. J., Kang, H. -. J., Kim, H. -. S., Chung, J. -. K., Lee, M. C., Lee, D. S. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. Journal of nuclear medicine official publication, Society of Nuclear Medicine. 47 (8), 1295-1301 (2006).
  17. Blocklet, D., et al. Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem cells. 24 (2), 333-336 (2006).
  18. Penicka, M., et al. One-day kinetics of myocardial engraftment after intracoronary injection of bone marrow mononuclear cells in patients with acute and chronic myocardial infarction. Heart (British Cardiac Society). 93 (7), 837-841 (2007).
  19. Schächinger, V., et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation. 118 (14), 1425-1432 (2008).
  20. Dedobbeleer, C., et al. Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intracoronary injection in the chronic phase of myocardial infarction. Journal of cardiovascular pharmacology. 53 (6), 480-485 (2009).
  21. Musialek, P., et al. Randomized transcoronary delivery of CD34(+) cells with perfusion versus stop-flow method in patients with recent myocardial infarction: Early cardiac retention of (m)Tc-labeled cells activity. Journal of nuclear cardiology official publication of the American Society of Nuclear Cardiology. 18 (1), 104-116 (2011).
  22. Kyrtatos, P. G., et al. Magnetic tagging increases delivery of circulating progenitors in vascular injury. JACC. Cardiovascular interventions. 2 (8), 794-802 (2009).
  23. Vandergriff, A. C., et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials. 35 (30), 8528-8539 (2014).
  24. Huang, Z., et al. Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction. Stem cell research & therapy. 4 (6), 149 (2013).
  25. Yanai, A., et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell transplantation. 21 (6), 1137-1148 (2012).
  26. Arbab, A. S., Jordan, E. K., Wilson, L. B., Yocum, G. T., Lewis, B. K., Frank, J. A. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Human gene therapy. 15 (4), 351-360 (2004).
  27. Cores, J., Caranasos, T. G., Cheng, K. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine. Journal of functional biomaterials. 6 (3), 526-546 (2015).
  28. Cheng, K., et al. Magnetic enhancement of cell retention, engraftment, and functional benefit after intracoronary delivery of cardiac-derived stem cells in a rat model of ischemia/reperfusion. Cell transplant. 21 (6), 1121-1135 (2012).
  29. Li, W., et al. Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. The journal of gene medicine. 10 (8), 897-909 (2008).
  30. Müller, P., et al. Magnet-Bead Based MicroRNA Delivery System to Modify CD133+ Stem Cells. Stem cells international. 2016, 7152761 (2016).
  31. Voronina, N., et al. Non-viral magnetic engineering of endothelial cells with microRNA and plasmid-DNA-An optimized targeting approach. Nanomedicine nanotechnology, biology, and medicine. , (2016).
  32. Noort, W. A., et al. Mesenchymal stromal cells to treat cardiovascular disease: strategies to improve survival and therapeutic results. Panminerva Med. 52 (1), 27-40 (2010).
  33. Jakob, P., Landmesser, U. Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovascular Research. 93 (4), 614-622 (2012).
  34. Sen, C. K. MicroRNAs as new maestro conducting the expanding symphony orchestra of regenerative and reparative medicine. Physiological genomics. 43 (10), 517-520 (2011).
  35. Papapetrou, E. P., Zoumbos, N. C., Athanassiadou, A. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene therapy. 12, S118-S130 (2005).
  36. Chira, S., et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget. 6 (31), 30675-30703 (2015).
  37. Hobel, S., Aigner, A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 5 (5), 484-501 (2013).
  38. Villate-Beitia, I., Puras, G., Zarate, J., Agirre, M., Ojeda, E., Pedraz, J. L., Hashad, D. First Insights into Non-invasive Administration Routes for Non-viral Gene Therapy. Gene Therapy – Principles and Challenges. , (2015).
  39. Cubillos-Ruiz, J. R., Sempere, L. F., Conejo-Garcia, J. R. Good things come in small packages: Therapeutic anti-tumor immunity induced by microRNA nanoparticles. Oncoimmunology. 1 (6), 968-970 (2012).
  40. Schade, A., et al. Magnetic nanoparticle based nonviral microRNA delivery into freshly isolated CD105(+) hMSCs. Stem Cells Int. 2014, 197154 (2014).
  41. Sutherland, D. R., Anderson, L., Keeney, M., Nayar, R., Chin-Yee, I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International society of hematotherapy and graft engineering. Journal of hematotherapy. 5 (3), 213-226 (1996).
  42. Voronina, N., et al. Preparation and in vitro characterization of magnetized mir-modified endothelial cells. Journal of visualized experiments. (123), (2017).
  43. Stamm, C., et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease:Safety and efficacy studies. The journal of thoracic and cardiovascular surgery. 133 (3), 717-725 (2007).
  44. King, A., et al. REpeated AutoLogous Infusions of STem cells In Cirrhosis (REALISTIC): A multicentre, phase II, open-label, randomised controlled trial of repeated autologous infusions of granulocyte colony-stimulating factor (GCSF) mobilised CD133+ bone marrow stem cells in patients with cirrhosis. A study protocol for a randomised controlled trial. BMJ open. 5 (3), e007700 (2015).
  45. Martinez, H. R., et al. Stem cell transplantation in amyotrophic lateral sclerosis patients: methodological approach, safety, and feasibility. Cell transplantation. 21 (9), 1899-1907 (2012).
  46. Jimenez-Quevedo, P., et al. Selected CD133(+) progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial. Circulation research. 115 (11), 950-960 (2014).
  47. Raval, A. N., et al. Bilateral administration of autologous CD133+ cells in ambulatory patients with refractory critical limb ischemia: lessons learned from a pilot randomized, double-blind, placebo-controlled trial. Cytotherapy. 16 (12), 1720-1732 (2014).
  48. Andreone, P., et al. Reinfusion of highly purified CD133+ bone marrow-derived stem/progenitor cells in patients with end-stage liver disease: A phase I clinical trial. Digestive and liver disease. 47 (12), 1059-1066 (2015).
  49. Arici, V., et al. Autologous immuno magnetically selected CD133+ stem cells in the treatment of no-option critical limb ischemia: clinical and contrast enhanced ultrasound assessed results in eight patients. Journal of translational medicine. 13, 342 (2015).
  50. Zali, A., et al. Intrathecal injection of CD133-positive enriched bone marrow progenitor cells in children with cerebral palsy: feasibility and safety. Cytotherapy. 17 (2), 232-241 (2015).
  51. Al-Zoubi, A., et al. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: long-term evaluation of safety and efficacy. Cell transplantation. 23, S25-S34 (2014).
  52. Isidori, A., et al. Positive selection and transplantation of autologous highly purified CD133(+) stem cells in resistant/relapsed chronic lymphocytic leukemia patients results in rapid hematopoietic reconstitution without an adequate leukemic cell purging. Biology of blood and marrow transplantation. 13 (10), 1224-1232 (2007).
  53. Nasseri, B. A., et al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. European heart journal. 35 (19), 1263-1274 (2014).
  54. Steinhoff, G., et al. Cardiac Function Improvement and Bone Marrow Response -: Outcome Analysis of the Randomized PERFECT Phase III Clinical Trial of Intramyocardial CD133(+) Application After Myocardial Infarction. EBioMedicine. 22, 208-224 (2017).
  55. Muller, P., et al. Intramyocardial fate and effect of iron nanoparticles co-injected with MACS(R) purified stem cell products. Biomaterials. 135, 74-84 (2017).
  56. Müller, P., Gaebel, R., Lemcke, H., Steinhoff, G., David, R. Data on the fate of MACS® MicroBeads intramyocardially co-injected with stem cell products. Data in brief. 13, 569-574 (2017).
  57. Skorska, A., et al. GMP-conformant on-site manufacturing of a CD133+ stem cell product for cardiovascular regeneration. Stem cell research & therapy. 8 (1), 33 (2017).
  58. Delyagina, E., Li, W., Ma, N., Steinhoff, G. Magnetic targeting strategies in gene delivery. Nanomedicine (Lond). 6 (9), 1593-1604 (2011).
  59. Schade, A., et al. Innovative strategy for microRNA delivery in human mesenchymal stem cells via magnetic nanoparticles. International journal of molecular sciences. 14 (6), 10710-10726 (2013).
  60. Delyagina, E., et al. Improved transfection in human mesenchymal stem cells: Effective intracellular release of pDNA by magnetic polyplexes. Nanomedicine. 9 (7), 999-1017 (2014).
  61. Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R., Anderson, D. G. Non-viral vectors for gene-based therapy. Nature reviews. Genetics. 15 (8), 541-555 (2014).
  62. Chen, J., Guo, Z., Tian, H., Chen, X. Production and clinical development of nanoparticles for gene delivery. Molecular therapy. Methods & clinical development. 3, 16023 (2016).
  63. Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Research. 44 (14), 6518-6548 (2016).
  64. Soenen, S. J., Rivera-Gil, P., Montenegro, J. -. M., Parak, W. J., de Smedt, S. C., Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano today. 6 (5), 446-465 (2011).
  65. Estelrich, J., Sánchez-Martín, M. J., Busquets, M. A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. International journal of nanomedicine. 10, 1727-1741 (2015).

Play Video

Cite This Article
Hausburg, F., Müller, P., Voronina, N., Steinhoff, G., David, R. Protocol for MicroRNA Transfer into Adult Bone Marrow-derived Hematopoietic Stem Cells to Enable Cell Engineering Combined with Magnetic Targeting. J. Vis. Exp. (136), e57474, doi:10.3791/57474 (2018).

View Video