Summary

Estimation of Nephron Number in Whole Kidney using the Acid Maceration Method

Published: May 22, 2019
doi:

Summary

Estimates of whole kidney nephron number are important clinically and experimentally, as there is an inverse association between nephron number and an enhanced risk of renal and cardiovascular disease.Herein, the use of the acid maceration method, which provides fast and reliable estimates of whole kidney nephron number, is demonstrated.

Abstract

Nephron endowment refers to the total number of nephrons an individual is born with, as nephrogenesis in humans is completed by 36 weeks of gestation and no new nephrons are formed post-birth. Nephron number refers to the total number of nephrons measured at any point in time post-birth. Both genetic and environmental factors influence both nephron endowment and number. Understanding how specific genes or factors influence the process of nephrogenesis and nephron loss or demise is important as individuals with lower nephron endowment or number are thought to be at a higher risk of developing renal or cardiovascular disease. Understanding how environmental exposures over the course of a person’s lifetime affects nephron number will also be vital in determining future disease risk. Thus, the ability to assess whole kidney nephron number quickly and reliably is a basic experimental requirement to better understand mechanisms that contribute to or promote nephrogenesis or nephron loss. Here, we describe the acid maceration method for the estimation of whole kidney nephron number based on the procedure described by Damadian, Shawayri, and Bricker, with slight modifications. The acid maceration method provides fast and reliable estimates of nephron number (as assessed by counting glomeruli) that are within 5% of those determined using more advanced, albeit expensive, methods such as magnetic resonance imaging. Moreover, the acid maceration method is an excellent high-throughput method to assess nephron number in large numbers of samples or experimental conditions.

Introduction

The nephron is both the basic structural and the functional unit of the kidney1. Structurally, the nephron consists of the glomerulus (capillaries and podocytes) located within the Bowman's capsule and the renal tubule, consisting of the proximal tubule, the Loop of Henle, and the distal tubule which terminates into the collecting duct. Functionally, the role of the nephron is the filtration and reabsorption of water and electrolytes and the secretion of wastes. In general, nephrogenesis is completed at 36 weeks of gestation in humans and shortly after birth in several species such as the mouse and the rat2. Nephron endowment refers to the total number of nephrons which an individual is born with, whereas nephron number is the total number of nephrons measured at any time post-birth3. The term nephron number and glomerular number are often used interchangeably. Because there is only one glomerulus per nephron, the assessment of glomeruli number is an important surrogate for estimating nephron number.

The assessment of nephron endowment and nephron number is of clinical interest as studies have demonstrated an association between nephron endowment and reduced nephron numbers with an increased incidence of cardiovascular disease4,5,6,7,8,9,10,11,12,13,14,15. Based on findings in kidneys at autopsy, Brenner observed that hypertensive individuals presented with a lower total number of nephrons than normotensive individuals16. Thus, Brenner hypothesized that there is an inverse relationship between nephron number and the risk of developing hypertension later in life. Brenner also hypothesized that a reduction in nephron number was compensated for by the nephrons that remained. In order to maintain the normal filtration rate in the kidney, residual nephrons compensate by increasing their glomerular surface area (glomerular hypertrophy), thereby working to mitigate any adverse effect of nephron loss on renal function4,16.

While protective in the short-term, glomerular hypertrophy, in the long-term, leads to increased sodium and fluid retention, increased extracellular fluid volume, and increases in arterial blood pressure, leading to a vicious cycle of further increases in glomerular capillary pressure, glomerular hyperfiltration, and nephron scarring (sclerosis) and injury4,16.

Obtaining estimates or counts of nephron number offer a couple of experimental advantages: 1) it provides information regarding the process of nephrogenesis, which can then be linked to specific genes or factors in the embryo or maternal-fetal environment, and 2) there is an association of nephron number with cardiovascular disease and, thus, there is the potential that estimates of nephron number could be used to predict future cardiovascular risk2,17,18,19,20,21,22. In addition to the maternal-fetal environment, several diseases directly impact nephron number and renal function, including atherosclerosis, diabetes, hypertension, and even normal aging2,9,10,11,12,22,23. Thus, assessment of whole kidney nephron number is important to understand both the genetic and environmental factors that affect nephrogenesis (i.e., nephron endowment) and nephron number over the course of a person's life and the resulting effects on renal function and cardiovascular health.

Currently, there are several methods available for the determination and quantification of nephron number, each with its own advantages and limitations24,25,26,27,28,29,30. Sophisticated methods for determining whole kidney nephron number include stereological methods, such as the dissector/fractionator method, and magnetic resonance imaging25,26. Often considered the gold-standard for determining whole kidney nephron number, the dissector/fractionator method is both expensive and time-consuming. Recent advances and improvement in magnetic resonance imaging and processing have provided the tools to count each and every nephron individually. However, magnetic resonance imaging is not only time-consuming but also extremely expensive. In addition, both the dissector/fractionator method and magnetic resonance imaging requires advanced technical expertise, thus limiting the use of such methods in the majority of research laboratories.

Most methods of determining nephron number make counts or estimates based on the identification of glomeruli, as they are readily identifiable structurally. In this paper, the acid maceration method for estimating nephron number in whole kidney is described and demonstrated27. The acid maceration method is fast, reliable, and significantly less expensive than other methods, such as the dissector/fractionator method and magnetic resonance imaging. Moreover, the acid maceration method provides highly repeatable estimates of nephron number that have been reported to be within the range of those determined using magnetic resonance imaging26.

Protocol

Supplies and reagents listed below are for the determination of the whole kidney nephron number in one mouse, that is, two kidneys. Modifications for the use of the acid maceration method for rat are identified with asterisks. All experimental protocols conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee at The University of Mississippi Medical Center. 1. Kidney Isolation Procedure</p…

Representative Results

Below are representative estimates of whole kidney nephron number from an established mouse model of hypertension and a genetic rat model of age-related chronic kidney disease. Key identifying characteristics of glomeruli, such as a spherical structure with or without attached pre- or post-arteriolar or tubular structures, are highlighted for those new to the acid maceration method (Figure 1). In th…

Discussion

With good experimental technique, the acid maceration method is ideal for estimating nephron number in whole kidney. Although the kidney is dissolved in acid, glomeruli remain largely intact and are readily identifiable, making the counting of individual glomeruli relatively easy and straightforward. The acid maceration technique is particularly advantageous for several reasons. First, the acid maceration method is a rapid and convenient method that requires relatively little in terms of expense and physical effort. All …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by the National Institutes of Health, National Heart, Lung, and Blood Institute (R01HL107632).

Materials

Isoflurane anesthesia Abbott Laboratories 05260-05
Isoflurane vaporizor system & flow gauge Braintree Scientific VP I Include medical grade oxygen supply
Leica Inverted Microscope DMIL LED Leica Microsystems DMIL LED Any make also suitable
Digital water bath Fisher Scientific 2239 Any make also suitable
ToughCut Fine surgical scissors Fine Science Tools 14058-11 25 mm cutting edge, 11.5 cm length; Tips: sharp-sharp; Tip shape: straight
Micro dissecting forceps 4 1/4 in. Biomed Res Instruments, Inc 10-1760 Curved tip
Plexiglass board 5 in. x 7 in. any source suitable n/a Any make also suitable
Hexagonal polystyrene weighing dish Fisher Scientific 02-2002-100 Any make also suitable
Razor blades Fisher Scientific 12-640 Single edge carbon steel 0.009
Gauze sponges 4 x 4 in. 8 ply Fisher Scientific MSD-1400250
10x concentrate phosphate buffered saline (PBS) Sigma Aldrich P5493-4L Dilute to 1x 
6 N Hydrocholric acid solution Sigma Aldrich 3750-32
15 mL conical centrifuge tube Fisher Scientific 14-959-70C Any make also suitable
50 mL conical centrifuge tube Fisher Scientific 14-959-49A Any make also suitable
Disposable 5 mL syringe Cole Palmer EW-07944-06 Any make also suitable
18G1.5 disposable needle Fisher Scientific 14-826-5D Any make also suitable
21G1.5 disposable needle Fisher Scientific 14-826-5B Any make also suitable
12-well multiple-well cell culture plates with lid Cole Palmer #FW-01959-06 Any make also suitable
Polypropylene modular test tube rack Cole Palmer #EW-06733-00 Capable of accommodating 15 and 50 mL conical tubes; any make also suitable

References

  1. Hall, J. E., Guyton, A. C. . Guyton and Hall Textbook of Medical Physiology. , (2016).
  2. Wang, X., Garrett, M. R. Nephron number, hypertension, and CKD: physiological and genetic insight from humans and animal models. Physiological Genomics. 49 (3), 180-192 (2017).
  3. Didion, S. P. A novel genetic model to explore the Brenner hypothesis: Linking nephron endowment and number with hypertension. Medical Hypotheses. 106, 6-9 (2017).
  4. Brenner, B. M. Nephron adaptation to renal injury or ablation. American Journal of Physiology. 249 (3 Pt 2), F324-F337 (1985).
  5. Didion, S. P., Wang, X., Garrett, M. R. Direct correlation between blood pressure and nephron endowment in a genetic model of hypertension. Hypertension. 68, A052 (2016).
  6. Luyckx, V. A., Brenner, B. M. The clinical importance of nephron mass. Journal of the American Society of Nephrology. 21 (6), 898-910 (2010).
  7. Mackenzie, H. S., Brenner, B. M. Fewer nephrons at birth: a missing link in the etiology of essential hypertension?. American Journal of Kidney Diseases. 26 (1), 91-98 (1995).
  8. Nyengaard, J. R., Bendtsen, T. F. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. The Anatomical Record. 232 (2), 194-201 (1992).
  9. Denic, A., Glassock, R. J., Rule, A. D. Structural and functional changes with the aging kidney. Advances in Chronic Kidney Disease. 23 (1), 19-28 (2016).
  10. Denic, A., et al. The substantial loss of nephrons in healthy human kidneys with aging. Journal of the American Society of Nephrology. 28 (1), 313-320 (2016).
  11. Keller, G., Zimmer, G., Mall, G., Ritz, E., Amann, K. Nephron number in patients with primary hypertension. The New England Journal of Medicine. 348 (2), 101-108 (2003).
  12. Hoy, W. E., et al. Nephron number, glomerular volume, renal disease and hypertension. Current Opinion in Nephrology and Hypertension. 17 (3), 258-265 (2008).
  13. Hoy, W. E., et al. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with age, nephron number, birth weight and body mass index. Clinical Nephrology. 74 (Suppl 1), S105-S122 (2010).
  14. Hughson, M. D., et al. Hypertension, glomerular hypertrophy and nephrosclerosis: the effect of race. Nephrology Dialysis Transplantation. 29 (7), 1399-1409 (2014).
  15. Puelles, V. G., et al. Glomerular number and size variability and risk for kidney disease. Current Opinion in Nephrology and Hypertension. 20 (1), 7-15 (2010).
  16. Brenner, B. M., Garcia, D. L., Anderson, S. Glomeruli and blood pressure. Less of one, more of the other?. American Journal of Hypertension. 1 (4 Pt 1), 335-347 (1988).
  17. Clark, A. T., Bertram, J. F. Molecular regulation of nephron endowment. American Journal of Physiology. 276 (4 Pt 2), F485-F497 (1999).
  18. Benz, K., et al. Early glomerular alterations in genetically determined low nephron number. American Journal of Physiology Renal Physiology. 300 (2), F521-F530 (2011).
  19. Zhao, H., et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Developmental Biology. 276 (2), 403-415 (2004).
  20. Sims-Lucas, S., Caruana, G., Dowling, J., Kett, M. M., Bertram, J. F. Augmented and accelerated nephrogenesis in TGF-beta2 heterozygous mutant mice. Pediatric Research. 63 (6), 607-612 (2008).
  21. Cullen-McEwen, L. A., Kett, M. M., Dowling, J., Anderson, W. P., Bertram, J. F. Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension. 41 (2), 335-340 (2003).
  22. Stelloh, C., et al. Prematurity in mice leads to reduction in nephron number, hypertension and proteinuria. Translational Research. 159 (2), 80-89 (2012).
  23. Galinsky, R., et al. Effect of intra-amniotic lipopolysaccharide on nephron number in preterm fetal sheep. American Journal of Physiology Renal Physiology. 301 (2), F280-F285 (2011).
  24. Bertam, J. F., et al. Why and how we determine nephron number. Pediatric Nephrology. 29 (4), 575-580 (2014).
  25. Nyengaard, J. R. Stereologic methods and their application in kidney research. Journal of the American Society of Nephrology. 10 (5), 1100-1123 (1999).
  26. Beeman, S. C., et al. Measuring glomerular number and size in perfused kidneys using MRI. American Journal of Physiology Renal Physiology. 300 (6), F1454-F1457 (2011).
  27. Damadian, R. V., Shawayri, E., Bricker, N. S. On the existence of non-urine forming nephrons in the diseased kidney of the dog. Journal of Laboratory and Clinical Medicine. 65, 26-39 (1965).
  28. Bonvalet, J. P., et al. Number of glomeruli in normal and hypertrophied kidneys of mice and guinea-pigs. The Journal of Physiology. 269 (3), 627-641 (1977).
  29. Bains, R. K., Sibbons, P. D., Murray, R. D., Howard, C. V., Van Velzen, D. Stereological estimation of the absolute number of glomeruli in the kidneys of lambs. Research in Veterinary Science. 60 (2), 122-125 (1996).
  30. Assmann, K. J., van Son, J. P., Koene, R. A. Improved method for the isolation of mouse glomeruli. Journal of the American Society of Nephrology. 2 (4), 944-946 (1991).
  31. Wang, X., et al. Nephron deficiency and predisposition to renal injury in a novel one-kidney genetic model. Journal of the American Society of Nephrology. 26 (7), 1634-1646 (2015).
  32. Lodrup, A. B., Karstoft, K., Dissing, T. H., Pedersen, M., Nyengaard, J. R. Kidney biopsies can be used for estimations of glomerular number and volume: a pig study. Virchows Archiv. 452 (4), 393-403 (2008).
  33. Fassi, A., et al. Progressive glomerular injury in the MWF rat is predicted by inborn nephron deficit. Journal of the American Society of Nephrology. 9 (8), 1399-1406 (1998).
  34. Wintour, E. M., et al. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. The Journal of Physiology. 549 (Pt 3), 929-935 (2003).
  35. Van Vuuren, S. H., et al. Compensatory growth of congenital solitary kidneys in pigs reflects increased nephron numbers rather than hypertrophy. PLoS One. 7 (11), e49735 (2012).
check_url/58599?article_type=t

Play Video

Cite This Article
Peterson, S. M., Wang, X., Johnson, A. C., Coate, I. D., Garrett, M. R., Didion, S. P. Estimation of Nephron Number in Whole Kidney using the Acid Maceration Method. J. Vis. Exp. (147), e58599, doi:10.3791/58599 (2019).

View Video