Summary

Camera-based Measurements of Intracellular [Na+] in Murine Atrial Myocytes

Published: May 27, 2022
doi:

Summary

The intracellular Na+ concentration ([Na+]i) in cardiac myocytes is altered during cardiac diseases. [Na+]i is an important regulator of intracellular Ca2+. We introduce a novel approach to measure [Na+]i in freshly isolated murine atrial myocytes using an electron multiplying charged coupled device (EMCCD) camera and a rapid, controllable illuminator.

Abstract

Intracellular sodium concentration ([Na+]i) is an important regulator of intracellular Ca2+. Its study provides insight into the activation of the sarcolemmal Na+/Ca2+ exchanger, the behavior of voltage-gated Na+ channels and the Na+,K+-ATPase. Intracellular Ca2+ signaling is altered in atrial diseases such as atrial fibrillation. While many of the mechanisms underlying altered intracellular Ca2+ homeostasis are characterized, the role of [Na+]i and its dysregulation in atrial pathologies is poorly understood. [Na+]i in atrial myocytes increases in response to increasing stimulation rates. Responsiveness to external field stimulation is therefore crucial for [Na+]i measurements in these cells. In addition, the long preparation (dye-loading) and experiment duration (calibration) require an isolation protocol that yields atrial myocytes of exceptional quality. Due to the small size of mouse atria and the composition of the intercellular matrix, the isolation of high quality adult murine atrial myocytes is difficult. Here, we describe an optimized Langendorff-perfusion based isolation protocol that consistently delivers a high yield of high quality atrial murine myocytes.

Sodium-binding benzofuran isophthalate (SBFI) is the most commonly used fluorescent Na+ indicator. SBFI can be loaded into the cardiac myocyte either in its salt form through a glass pipette or as an acetoxymethyl (AM) ester that can penetrate the myocyte’s sarcolemmal membrane. Intracellularly, SBFI-AM is de-esterified by cytosolic esterases. Due to variabilities in membrane penetration and cytosolic de-esterification each cell has to be calibrated in situ. Typically, measurements of [Na+]i using SBFI whole-cell epifluorescence are performed using a photomultiplier tube (PMT). This experimental set-up allows for only one cell to be measured at one time. Due to the length of myocyte dye loading and the calibration following each experiment data yield is low. We therefore developed an EMCCD camera-based technique to measure [Na+]i. This approach permits simultaneous [Na+]i measurements in multiple myocytes thus significantly increasing experimental yield.

Introduction

In atrial diseases (e.g., atrial fibrillation [AF]) intracellular Ca2+ signaling is profoundly altered1. While many of the underlying mechanisms of ‘remodeled’ intracellular Ca2+ signaling in AF have been well characterized2,3, the role an altered intracellular sodium concentration ([Na+]i) may play is poorly understood. [Na+]i is an important regulator of intracellular Ca2+. The study of [Na+]i can provide insight into the activation of the sarcolemmal Na+/Ca2+ exchanger (NCX), the behavior of Na+ channels and Na+,K+-ATPase (NKA)4. We have previously shown that high atrial activation rates, as occur during AF, lead to a significant reduction in [Na+]i 1. Previous work has shown an increase in NCX current density (INCX) and protein expression levels in AF3. An increase in the late component of the voltage-dependent Na+ current (INa, late) in isolated atrial myocytes from patients with AF was also reported5. Thus, there is evidence of profound changes in intracellular Na+ homeostasis in AF. Reliable and reproducible measurements of [Na+]i in isolated atrial myocytes are therefore needed to further our understanding of AF pathology. Here, we demonstrate how to reproducibly isolate high quality murine atrial myocytes that are suitable for measurements of [Na+]i. We have focused our optimized atrial cell isolation protocol on murine atrial myocytes because transgenic (TG) mouse models of atrial fibrillation have become a vital part of AF research6. These mice are often only available in limited numbers and the atria are often fibrotic leading to challenges for cell isolation.

In general, [Na+]i in viable cells can be measured with fluorescent indicators7,8, or with different types of microelectrodes9. Microelectrode-based techniques require penetration of the sarcolemmal membrane. This technique is therefore limited to larger cells and is unsuitable for small and narrow atrial myocytes whose cell integrity is easily compromised.

Sodium-binding benzofuran isophthalate (SBFI) is a fluorescent indicator, which undergoes a large wavelength shift upon binding Na+ 7. SBFI is alternatingly excited at 340 nm and 380 nm and emitted fluorescence is collected after passing through an emission filter (510 nm). Ratios of signals at the two excitation wavelengths (F340/380) can cancel out the local path length, dye concentration, and wavelength-independent variations in illumination intensity and detection efficiency. When an in situ calibration using solutions with known sodium concentration ([Na+]) is performed in each cell the F340/380 ratio obtained during the experiment yields precise and sensitive measurements of [Na+]i. As all Na+ indicators, SBFI also displays some affinity for K+. Using the calibration method shown here allows to reliably ‘clamp’ [Na+]i and intracellular potassium concentration ([K+]i) during the calibration process so that [Na+]i can be reliably calibrated even when it is <10% of [K+]i 10.

We introduce a novel EMCCD camera based technique for ratiometric measurements of [Na+]i using SBFI. The EMCCD camera allows, for the first time, simultaneous [Na+]i measurements (and calibration) in multiple cells. This is especially beneficial in an experimental setting where animal numbers are limited (e.g., transgenic mouse models). Typically, [Na+]i measurements using SBFI are performed using a photomultiplier tube (PMT) to collect whole cell epifluorescence1,11. While PMTs offer very good temporal resolution of the fluorescence signal, the spatial resolution is very low and experiments are limited to one cell at a time.

Our novel protocol facilitates highly reproducible and sensitive measurements of [Na+]i. It is optimized for the simultaneous acquisition of changes in [Na+]i in multiple murine atrial myocytes, but is adaptable to many other cell types.

Protocol

All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Maryland, Baltimore. 1. Isolation of atrial myocytes from adult murine hearts Place each mouse in a precision vaporizer and induction chamber gassed with isoflurane in 100% oxygen. Set the isoflurane flow to 1% until the animal is unresponsive before giving an intraperitoneal (IP) heparin injection (1–1.25 U/g) 15 min before euthanasia. …

Representative Results

Evaluation of Atrial Cell Quality Freshly isolated atrial myocytes were evaluated based on cell morphology and responsiveness to field stimulation as outlined in the protocol in six consecutive atrial cell isolations. Data shown in Figure 2 show a very high percentage of rod-shaped atrial myocytes that retain clear cross striation. Similarly, about 50% of atrial cells respond to high rates of external field stimulation up to 3 Hz. <…

Discussion

Here we introduce a novel EMCCD camera-based technique for the simultaneous quantitative measurement of [Na+]i in multiple viable atrial myocytes using sodium-binding benzofuran isophthalate (SBFI). The approach described here is the first to allow for the simultaneous measurement of [Na+]i in multiple cells. The main advantages this new protocol presenta are (i) the significant increase in experimental yield and (ii) the reduction in illumination intensity and duration due to …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a Scientist Development Grant from the American Heart Association (14SDG20110054) to MG; the NIH Interdisciplinary Training Grant in Muscle Biology (T32 AR007592) and the NIH Cardiovascular Disease Training Grant (2T32HL007698-22A1) to LG; a Scientist Development Grant from the American Heart Association (15SDG22100002) to LB and by NIH grants R01 HL106056, R01 HL105239 and U01 HL116321 to WJL.

Materials

2,3-Butanedione monoxime (BDM) Sigma-Aldrich B0753
340 Excitation Filter Chroma ET40X 25 mm
380 Excitation Filter Chroma ET80X 25 mm
510 Emission Filter Chroma ET510/80m 25 mm
Bovine Serum Albumin (BSA) Sigma-Aldrich A7906
Bubble trap BD Medical Technologies 904477 Custom made from a 5 ml Luer Lok Syringe, which is located in the tubing path from the perfusing solution to the cannula
CaCl2 solution Sigma-Aldrich 21115
Cannula BD Medical Technologies 305167 Custom made from a 22 G x 1 1/2 inch needle. Cut to 1 inch and sand 1mm distal tip.
Cell Chamber Custom machined with an opening that can securely hold a 25 mm glass cover slip and with a cover that has an inlet and an outlet port for perfusion.
Circulating Water Bath VWR
Collagenase II Worthington LS004176 Specific activity 290 U/g
Creatinine Sigma-Aldrich C0780
DG5-plus illuminator Sutter Instrument Lambda DG-4/DG-5 Plus
DMSO Thermo Fischer BP231
EGTA Sigma-Aldrich E4378
EMCCD camera Princeton Instruments ProEM-HS
Fine Hemostats Fine Science Tools 130-20
Fine Scissors Fine Science Tools 14060-10
Forceps Supergrip Fine Science Tools 00632-11
Glass Cover slips VWR 4838089 25 mm circle
Glucose Sigma-Aldrich G7528
Gramicidin D Sigma-Aldrich G5002
HEPES Sigma-Aldrich H3375
Inner silicon Tubing VWR VWRselect brand silicon tubing
Inverted microscope Nikon Instruments NikonTE 2000 U
Isolation Tools
K Gluconate Sigma-Aldrich P1847
KCI Sigma-Aldrich P5405
KH2PO4 Calbiochem 529568
Langendorff perfusion apparatus
MgCl2.6H2O * Sigma-Aldrich M0250
MyoPacer Cell Stimulator IonOptix
Na Gluconate Sigma-Aldrich S2054
NaCl Sigma-Aldrich S9888
NaH2PO4 Sigma-Aldrich S9390
Natural Mouse Laminin Thermo Fischer 23017015 0.5-2.0 mg/ml
Outer tubing VWR
Petri dish 35X10 mm Falcon 351008
PowerLoad Thermo Fischer P10020
Protease XXIV Sigma-Aldrich P8038
SBFI-AM Thermo Fischer S1264
Silk suture Fine Science Tools 18020-50 0.12 mm diameter
Small Spring scissors Fine Science Tools 15000-03
Standard Pattern Forceps Fine Science Tools 11000-12
Strophanthidin Sigma-Aldrich G5884
Surgical Scissors Tough Cut Fine Science Tools 14054-13
Suture Tying Forceps Fine Science Tools 00272-13
Taurine Sigma-Aldrich T0625
Trisbase Sigma-Aldrich TRIS-RO
Trypsin Sigma-Aldrich T0303
UVFS Reflective 0.1 ND Filter Thorlabs NDUV01B 25 mm
UVFS Reflective 0.2 ND Filter Thorlabs NDUV02B 25 mm
UVFS Reflective 0.3 ND Filter Thorlabs NDUV03B 25 mm
UVFS Reflective 0.5 ND Filter Thorlabs NDUV05B 25 mm
UVFS Reflective 1 ND Filter Thorlabs NDUV010B 25 mm

References

  1. Greiser, M., et al. Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes. Journal of Clinical Investigation. , (2014).
  2. Greiser, M., Lederer, W. J., Schotten, U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation. Cardiovascular Research. 89, 722-733 (2011).
  3. Voigt, N., et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 125, 2059-2070 (2012).
  4. Bers, D. M. Cardiac excitation-contraction coupling. Nature. 415, 198-205 (2002).
  5. Sossalla, S., et al. Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. Journal American College of Cardiology. 55, 2330-2342 (2010).
  6. Wan, E., et al. Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice. Journal of Clinical Investigation. 126, 112-122 (2016).
  7. Minta, A., Tsien, R. Y. Fluorescent indicators for cytosolic sodium. Journal of Biological Chemistry. 264, 19449-19457 (1989).
  8. Donoso, P., Mill, J. G., O’Neill, S. C., Eisner, D. A. Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes. Journal of Physiology. 448, 493-509 (1992).
  9. Friedman, S. M., Jamieson, J. D., Hinke, J. A., Friedman, C. L. Use of glass electrode for measuring sodium in biological systems. Proceedings of the Society for Experimental Biology. 99, 727-730 (1958).
  10. Harootunian, A. T., Kao, J. P., Eckert, B. K., Tsien, R. Y. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. Journal of Biological Chemistry. 264, 19458-19467 (1989).
  11. Despa, S., Islam, M. A., Pogwizd, S. M., Bers, D. M. Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. Journal of Physiology. 539, 133-143 (2002).
  12. Shioya, T. A simple technique for isolating healthy heart cells from mouse models. Journal of Phsiological Sciences. 57, 327-335 (2007).
  13. Icardo, J. M., Colvee, E. Origin and course of the coronary arteries in normal mice and in iv/iv mice. Journal of Anatomy. 199, 473-482 (2001).
  14. Yu, Z. B., Gao, F. Non-specific effect of myosin inhibitor BDM on skeletal muscle contractile function]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 21, 449-452 (2005).
  15. Levi, A. J., Lee, C. O., Brooksby, P. Properties of the fluorescent sodium indicator "SBFI" in rat and rabbit cardiac myocytes. Journal of Cardiovasc Electrophysiology. 5, 241-257 (1994).
  16. Baartscheer, A., Schumacher, C. A., Fiolet, J. W. Small changes of cytosolic sodium in rat ventricular myocytes measured with SBFI in emission ratio mode. Journal of Molecular and Cellular Cardiology. 29, 3375-3383 (1997).
  17. Despa, S., Tucker, A. L., Bers, D. M. Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during beta-adrenergic stimulation in mouse ventricular myocytes. Circulation. 117, 1849-1855 (2008).
  18. Correll, R. N., et al. Overexpression of the Na+/K+ ATPase alpha2 but not alpha1 isoform attenuates pathological cardiac hypertrophy and remodeling. Circulation Research. 114, 249-256 (2014).
  19. Hinke, J. Glass micro-electrodes for measuring intracellular activities of sodium and potassium. Nature. 184 (Suppl 16), 1257-1258 (1959).
  20. Thomas, R. C. New design for sodium-sensitive glass micro-electrode. Journal of Physiology. 210, 82P-83P (1970).
  21. Thomas, R. C. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. Journal of Physiology. 201, 495-514 (1969).
  22. Slack, C., Warner, A. E., Warren, R. L. The distribution of sodium and potassium in amphibian embryos during early development. Journal of Physiology. 232, 297-312 (1973).
  23. Eisner, D. A., Lederer, W. J., Vaughan-Jones, R. D. The control of tonic tension by membrane potential and intracellular sodium activity in the sheep cardiac Purkinje fibre. Journal of Physiology. 335, 723-743 (1983).
  24. Despa, S., Kockskamper, J., Blatter, L. A., Bers, D. M. Na/K pump-induced [Na](i) gradients in rat ventricular myocytes measured with two-photon microscopy. Biophysical Journal. 87, 1360-1368 (2004).
  25. Kornyeyev, D., et al. Contribution of the late sodium current to intracellular sodium and calcium overload in rabbit ventricular myocytes treated by anemone toxin. American Journal of Physiology-Heart and Circulatory Physiology. 310, H426-H435 (2016).
  26. Szmacinski, H., Lakowicz, J. R. Sodium Green as a potential probe for intracellular sodium imaging based on fluorescence lifetime. Annals of Biochemistry. 250, 131-138 (1997).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Garber, L., Joca, H. C., Coleman, A. K., Boyman, L., Lederer, W. J., Greiser, M. Camera-based Measurements of Intracellular [Na+] in Murine Atrial Myocytes. J. Vis. Exp. (183), e59600, doi:10.3791/59600 (2022).

View Video