Summary

荧光血管造影用于评估大鼠和兔动脉瘤模型中的动脉灌注和父动脉鉴赏

Published: July 24, 2019
doi:

Summary

我们使用基于荧光的荧光视频血管造影(FVA),提出一种方案,以有效评估大鼠和兔子的动脉灌注和侧壁动脉瘤的血管鉴口。阳性预测值为92.6%,是一种简单但非常有效、经济的方法,无需特殊设备。

Abstract

脑动脉瘤治疗的重点是实现完全闭塞,以及保持父母动脉的血流。氟西因钠和丁氰酸绿分别用于观察血流和血管灌注状态。本研究的目的是应用FVA来验证在兔子和大鼠诱导侧壁动脉瘤后实时血流、血管灌注和动脉瘤的闭塞,并验证这些物种的程序。

通过在捐赠兔的胡萝卜动脉上缝合一个去细胞化的动脉袋,在10只兔子身上制造了20个侧壁动脉瘤。此外,在48只大鼠中制造了48个显微外科侧壁动脉瘤。在创建后一个月的随访期间,对母动脉/动脉瘤复合物进行解剖,并使用静脉荧光管(10%,1 mL)注射,通过兔子的耳静脉导管插入和大鼠的股骨静脉催化进行FVA注射。动脉瘤随后被收获,并宏观评估。

从宏观上看,兔子16个动脉瘤中的14个表明没有残留的母动脉灌注,完全被遮挡的发光体,然而11(79%)被FVA检测到。由于技术问题,排除了四个动脉瘤。在大鼠中,在48例中,有25例在宏观上观察到残留动脉瘤灌注。在23个没有灌注宏观证据的病例中,FVA确认了22例动脉瘤的发病率(96%)。没有与FVA相关的不良事件。荧光辛易于应用,无需特殊设备。它是一种安全、极其有效的方法,用于评估在实验环境中与兔子和大鼠的动脉完整性和动脉瘤的亲动脉完整性/残留灌注。使用荧光辛作为造影剂的FVA似乎能有效控制动脉瘤和基础血管的锥度,甚至可以适应旁路手术。

Introduction

完全动脉瘤消解和母动脉完整性的证据在动脉瘤手术中至关重要。有几个选项来确认父动脉闭塞和动脉闭塞,如多普勒血管造影,常规脑血管造影(DSA),计算机断层扫描血管造影(CTA)或磁共振血管造影(MRA)1, 2.然而,这些方法既昂贵又耗时,在实验室环境中往往不可用。此外,它们可能有相关的副作用,如辐射暴露或需要额外的镇静实验动物,以避免运动艺术品。

随着越来越多的新的血管内设备出现,连续需要对此类设备进行临床前测试。然而,这些研究往往依赖于验尸分析(例如,宏观病理学和组织学),并且缺乏关于动态灌注的信息。此外,对于研究人员来说,在实验外科手术中获得即时可靠的信息可能至关重要。荧光血管造影是一种经济高效且易于执行可视化技术1,3,4。

因此,英青绿(ICG)视频血管造影术常用于临床神经外科手术,并已广泛研究5,6。荧光视频血管造影 (FVA) 是一种替代技术,其附加优势是创建荧光信号,该信号位于人类视觉的波长范围内,因此肉眼无需扩展光谱红外摄像机即可看到7.氟化物视频血管造影在临床脑血管手术中较少使用,在实验环境中关于FVA的报告很少1,4。

本报告旨在论证FVA在大鼠和兔前脑血管研究中的应用的可行性和范围。

Protocol

啮齿动物被安置在动物护理设施中,实验由瑞士伯尔尼大学动物福利委员会(BE 108/16)和(BE65/16)审查和批准。所有动物都按照标准实验室饮食,免费获得食物和水。所有动物实验都是在仔细考虑3R(替换、减少和优化)的情况下进行的。包括10只新西兰雌性白兔和48只雄性威斯塔鼠。已严格遵守了《到达准则》8。 注:在10只兔子身上,通过缝合供体兔子的胡萝卜动脉上的…

Representative Results

在手术期间监测心率和血压。兔子的平均心率为193/分钟,大鼠为196/分钟。兔子的体重在3.05-4.18公斤,老鼠的体重为335-690克。 我们能够在十只兔子中的八只(图1)中执行FVA。由于技术困难,两只兔子的四次动脉瘤检查没有用相机记录下来。没有关于大鼠FVA的技术困难报告。然而,FVA不能在一只大鼠中执行,因为难以刺穿股骨静脉。 在8只兔子…

Discussion

FVA 是一种有前途的简单方法,用于检测啮齿动物中的容器,并且可以使用商业设备和现成设备进行。FVA 可在任何需要手术中评估容器完整性的手术中实施,因为容器需要首先进行适当的解剖。

作者更喜欢静脉注射,而不是动脉注射,因为意外事件的风险较低,如感染,缺血症和隔间综合征12。静脉注射使可靠,空间有限,高度浓缩染色,并要求小染料剂量13,14。<sup class="x…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究部分得到了瑞士坎顿斯皮特塔尔·阿劳的研究资助。

Materials

For rabbits
Aluminium foil
Animal shaver
Black tape
Blue filter Thorlabs MF475-35
Body warm plate
Camera Sony NEX-5R
Catheter 22G Vasofix Safety
Disinfictant
Fluorescein sodium Fluorescein Faure 10%
Glas plate
Green filter Thorlabs MF539-43
Incontinence pad
Infusion pump Perfusor Secura
Ketamine hydrochloride any generic products
Needle 25G
Oxygen
Ringer's Solution
Sterile sheets
Surgical instruments micro forceps, micro scissor, blunt surgical scissor
Surgical microscope OPMI, Carl Zeiss AG, Oberkochen, Germany
Syringe 2ml, 5ml, 50ml
Tape
Three-way-stopcock
Torch light
Xylazin any generic products
For rats
Aluminium foil
Animal shaver
Black tape
Blue filter Thorlabs MF475-35
Body warm plate
Camera Sony NEX-5R
Disinfictant
Fluorescein sodium Fluorescein Faure 10%
Green filter Thorlabs MF539-43
Incontinence pad
Isoflurane
Ketamine hydrochloride any generic products
Medetomidine hydrochloride any generic products
Needle 25G
Oxygen
Plate
Ringer's Solution
Sterile sheets
Surgical instruments micro forceps, micro scissor, blunt surgical scissor
Surgical microscope OPMI, Carl Zeiss AG, Oberkochen, Germany
Syringe 2ml, 5ml
Tape
Torch light

References

  1. Kakucs, C., Florian, I. A., Ungureanu, G., Florian, I. S. Fluorescein Angiography in Intracranial Aneurysm Surgery: A Helpful Method to Evaluate the Security of Clipping and Observe Blood Flow. World Neurosurgery. 105, 406-411 (2017).
  2. Ajiboye, N., Chalouhi, N., Starke, R. M., Zanaty, M., Bell, R. Unruptured Cerebral Aneurysms: Evaluation and Management. ScientificWorldJournal. 2015, 954954 (2015).
  3. Suzuki, K., et al. Confirmation of blood flow in perforating arteries using fluorescein cerebral angiography during aneurysm surgery. Journal of Neurosurgery. 107 (1), 68-73 (2007).
  4. Gruter, B. E., et al. Fluorescence Video Angiography for Evaluation of Dynamic Perfusion Status in an Aneurysm Preclinical Experimental Setting. Operative Neurosurgery. , (2019).
  5. Raabe, A., et al. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. Journal of Neurosurgery. 103 (6), 982-989 (2005).
  6. Riva, M., Amin-Hanjani, S., Giussani, C., De Witte, O., Bruneau, M. Indocyanine Green Videoangiography in Aneurysm Surgery: Systematic Review and Meta-Analysis. Neurosurgery. , (2017).
  7. Kuroda, K., et al. Intra-arterial injection fluorescein videoangiography in aneurysm surgery. Neurosurgery. 72, 141-150 (2013).
  8. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., Altman, D. G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLOS Biology. 8 (6), 1000412 (2010).
  9. Marbacher, S., et al. The Helsinki rat microsurgical sidewall aneurysm model. Journal of Visualized Experiments. (92), e51071 (2014).
  10. Marbacher, S., et al. Complex bilobular, bisaccular, and broad-neck microsurgical aneurysm formation in the rabbit bifurcation model for the study of upcoming endovascular techniques. American Journal of Neuroradiology. 32 (4), 772-777 (2011).
  11. Shurey, S., et al. The rat model in microsurgery education: classical exercises and new horizons. Archives of Plastic Surgery. 41 (3), 201-208 (2014).
  12. Foster, S. D., Lyons, M. S., Runyan, C. M., Otten, E. J. A mimic of soft tissue infection: intra-arterial injection drug use producing hand swelling and digital ischemia. World Journal of Emergency Medicine. 6 (3), 233-236 (2015).
  13. Flower, R. W. Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye. Investigative Ophthalmology & Visual Science. 12 (12), 881-895 (1973).
  14. Yoshioka, H., et al. Advantage of microscope integrated for both indocyanine green and fluorescein videoangiography on aneurysmal surgery: case report. Neurologia medico-chirurgica (Tokyo). 54 (3), 192-195 (2014).
  15. Ichikawa, T., et al. Development of and Clinical Experience with a Simple Device for Performing Intraoperative Fluorescein Fluorescence Cerebral Angiography: Technical Notes. Neurologia medico-chirurgica. 56 (3), 141-149 (2016).
  16. Alander, J. T., et al. A review of indocyanine green fluorescent imaging in surgery. International Journal of Biomedical Imaging. 2012, 940585 (2012).
  17. Lane, B., Bohnstedt, B. N., Cohen-Gadol, A. A. A prospective comparative study of microscope-integrated intraoperative fluorescein and indocyanine videoangiography for clip ligation of complex cerebral aneurysms. Journal of Neurosurgery. 122 (3), 618-626 (2015).
  18. Blair, N. P., Evans, M. A., Lesar, T. S., Zeimer, R. C. Fluorescein and fluorescein glucuronide pharmacokinetics after intravenous injection. Investigative Ophthalmology & Visual Science. 27 (7), 1107-1114 (1986).
  19. Hillmann, D., et al. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proceedings of the National Academy of Sciences of the United States of America. 113 (46), 13138-13143 (2016).
  20. Golby, A. J. . Image-Guided Neurosurgery. , (2015).
check_url/59782?article_type=t

Play Video

Cite This Article
Strange, F., Sivanrupan, S., Gruter, B. E., Rey, J., Taeschler, D., Fandino, J., Marbacher, S. Fluorescence Angiography for Evaluation of Aneurysm Perfusion and Parent Artery Patency in Rat and Rabbit Aneurysm Models. J. Vis. Exp. (149), e59782, doi:10.3791/59782 (2019).

View Video