Summary

三维打印指南模板辅助皮椎间盘(PVP)

Published: October 17, 2019
doi:

Summary

在这里,我们提出了一个三维打印指南模板的皮椎骨。T11椎骨压缩性骨折患者被选择作为案例研究。

Abstract

皮下椎骨成形术(PVP)被认为是骨质椎骨压缩性骨折引起的背痛的有效治疗。PVP的准确性主要取决于外科医生在传统手术中的经验和多荧光镜。世界各地都报告了穿刺相关的并发症。为了使手术更加精确,降低穿刺相关并发症的发生率,我们的团队对PVP应用了三维打印指南模板来修改传统程序。该协议介绍了如何在软件中将目标椎骨DICOM成像数据建模为三维,如何模拟此三维模型中的操作,以及如何利用所有手术数据重建患者特定的应用模板。使用此模板,外科医生可以准确地识别合适的穿刺点,以提高手术的准确性。整个方案包括:1)骨质椎骨压缩性骨折的诊断;2) 目标椎骨CT成像的采集;3)模拟软件中的操作;4)设计制作三维打印导板模板;5) 将模板应用到操作过程中。

Introduction

骨质疏松性骨折(OVCF)作为各种骨质疏松性骨折中最常见的类型性骨折,是当今临床上备受关注的临床问题。根据目前的指南建议,皮皮椎骨成形术是临床治疗骨质椎骨压缩性骨折1最有效的微创方法之一。

传统上,外科医生在C-arm荧光镜的指导下进行皮下椎骨整形手术,以治疗椎骨压缩性骨折,以恢复压缩的椎体,缓解早期疼痛2。即使是有经验的外科医生,只要依靠个人经验,就能在确认合适的穿孔点时出错。此操作可能导致一些与穿刺相关的并发症(例如,水泥渗入周围组织、神经根损伤、脊髓内造脑肿等3、4、5);此外,近50%的患者有局部并发症从传统的PVP与95%的并发症来自水泥泄漏到周围组织或栓塞静脉6。随着精密手术的出现,三维打印指南模板已用于许多脊柱手术7,因为它可以提高程序的准确性,减少难度,并尽量减少操作风险。在这里,我们将三维打印指南模板应用于PVP,使外科手术更加精确,并降低穿刺相关并发症的发生率。与传统方法相比,3D打印指南模板辅助手术有1)手术穿刺精度提高,2)手术过程中辐射暴露最小化,3)缩短手术时间,4)减少手术时间。穿刺相关并发症的概率。

Protocol

本研究得到了北京友谊医院首都医科大学伦理委员会的批准。 1. 通过X射线荧光镜检查、磁共振成像(MRI)、骨丝镜和症状诊断骨质椎骨压缩性骨折(OVCF) 识别老年患者有OVCF的患者,有背痛、脊柱过程中的压痛、背部的中脊髓肌肉等。 使用后体X射线荧光镜检查患者是否有椎骨压缩性骨折。 使用 MRI 诊断患者是否有新发病的椎骨压缩性骨折,并确定目?…

Representative Results

医院对CT图像进行采集和数字建模,在3D打印公司进行三维打印。从 CT 图像重建三维打印的 3D 模型需要 30 分钟,三维打印公司需要大约 6 小时才能打印出 2 个指南模板并发送到医院。 患者目标椎骨的手术前图像如图1和图2:X射线(A1:后视;A2:横向视图);磁共振图像(A3:TIWI 视图…

Discussion

皮皮椎骨成形术(PVP)被认为是治疗骨质椎骨压缩性骨折最好方法之一,因为它有一些明显的优点:它是微创的;出血较少,恢复迅速。传统的PVP主要由C-arm荧光镜引导,需要反复的荧光镜来确定安全和理想的穿刺点、穿刺角度和方向,这增加了术中辐射剂量和操作时间10.此外,手术的成功率主要取决于外科医生的经验。然而,仍然有1.2%-15.7%的错误率和0-7.42%?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该研究由北京市科学技术委员会资助(中国,中国,中国,Z.Z181100001718078)。

Materials

X-ray machine Company Philips machine
Magnetic resonance image machine Company GE machine
computer tomography Company GE machine
HORI 3D printing machine Company of Beijing Huitianwei Technology co. ltd. machine
Geomagic Design X 3D Systems Company software
Materialise Interactive Medical Image Control System Materialise Company software
VertePort needle Stryker Company operation appliance
Spineplex Stryker Company operation appliance
Percutaneous Cement Delivery System Stryker Company operation appliance
Spirit Level Plus IOS App store gradientor

References

  1. Orthopaedic Society of the Chinese Medical Association. Guidelines for the diagnosis and treatment of osteoporotic fractures. Chinese Journal of Orthopaedics. 37 (1), 1-10 (2017).
  2. Yi, H. J., Jeong, J. H., Im, S. B., Lee, J. K. Percutaneous vertebroplasty versus conservative treatment for one level thoracolumbar osteoporotic compression fracture: Results of an over 2-year follow-up. Pain Physician. 19 (5), (2016).
  3. Balkarli, H., Demirtas, H., Kilic, M., Ozturk, I. Treatment of osteoporotic vertebral compression fractures with percutaneous vertebroplasty under local anesthesia: clinical and radiological results. International Journal of Clinical & Experimental Medicine. 8 (9), 16287-16293 (2015).
  4. Woojin, C., Varkey, J. A., Jing, C., Hwan, B. J. A Review of Current Clinical Applications of Three Dimensional Printing in Spine Surgery. Asian Spine Journal. 12 (1), 171-177 (2018).
  5. Laredo, J. D., Hamze, B. Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiology. 33 (9), 493-505 (2004).
  6. Saracen, A., Kotwica, Z. Complications of percutaneous vertebroplasty: An analysis of 1100 procedures performed in 616 patients. Medicine. 95 (24), e3850 (2016).
  7. Park, H. J., Wang, C., Choi, K. H., Kim, H. N. Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training. Journal of Orthopaedic Surgery and Research. 13 (1), 86 (2018).
  8. Gu, Y. F., et al. Percutaneous vertebroplasty and interventional tumor removal for malignant vertebral compression fractures and/or spinal metastatic tumor with epidural involvement: a prospective pilot study. Journal of Pain Research. 10, 211-218 (2017).
  9. Ruiz, S. F., et al. Comparative review of vertebroplasty and kyphoplasty. World Journal of Radiology. 6 (6), 329-343 (2014).
  10. Cannavale, A., et al. Percutaneous vertebroplasty with the rotational fluoroscopy imaging technique. Skeletal Radiology. 43 (11), 1529-1536 (2014).
  11. Ringer, A. J., Bhamidipaty, S. V. Percutaneous access to the vertebral bodies: a video and fluoroscopic overview of access techniques for trans-, extra-, and infrapedicular approaches. World Neurosurgery. 80 (3-4), 428-435 (2013).
  12. Kaneyama, S., et al. A novel screw guiding method with a screw guide template system for posterior C-2 fixation. Neurosurgery Spine. 21 (2), 231-238 (2014).
  13. Sugawara, T., et al. Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine. Neurosurgery Spine. 19 (2), 185-190 (2013).
  14. Li, J., Lin, J. S., Yang, Y., Xu, J. C., Fei, Q. 3-Dimensional printing guide template assisted percutaneous vertebroplasty: Technical note. Journal of Clinical Neuroscience. 52, 159-164 (2018).
check_url/60010?article_type=t

Play Video

Cite This Article
Hu, P., Lin, J., Xu, J., Meng, H., Su, N., Yang, Y., Fei, Q. Three-Dimensional Printing Guide Template Assisted Percutaneous Vertebroplasty (PVP). J. Vis. Exp. (152), e60010, doi:10.3791/60010 (2019).

View Video