Summary

轻度创伤性脑损伤大鼠海马学的高级扩散成像

Published: August 14, 2019
doi:

Summary

这个程序的总体目标是获得轻度创伤性脑损伤大鼠海马的定量微结构信息。这是使用先进的扩散加权磁共振成像协议和基于兴趣区域的参数扩散图分析完成的。

Abstract

轻度创伤性脑损伤 (mTBI) 是最常见的后天性脑损伤类型。由于创伤性脑损伤患者表现出巨大的变异性和异质性(年龄、性别、创伤类型、其他可能的病理等),动物模型在解开临床研究中局限性的因素方面发挥着关键作用。它们提供了一个标准化和受控的设置,以研究损伤的生物机制和TBI后的修复。然而,并非所有动物模型都有效地模仿了mTBI的漫射和微妙特性。例如,常用的受控皮质撞击 (CCI) 和横向流体撞击损伤 (LFPI) 模型利用颅骨切除术暴露大脑并引起广泛的焦部创伤,这在 mTBI 中并不常见。因此,这些实验模型对模拟mTBI无效。因此,应该使用适当的模型来调查 mTBI。大鼠的Marmarou降重模型导致类似的微结构改变和认知障碍,如在轻度创伤患者中看到;因此,此模型是为此协议选择的。传统的计算机断层扫描和磁共振成像 (MRI) 扫描通常显示轻度损伤后没有损伤,因为 mTBI 通常只引起细微和漫反射性损伤。通过扩散加权MRI,可以研究脑组织的微观结构特性,从而更深入地了解轻度创伤后的微观变化。因此,本研究的目标是获得选定感兴趣区域(即海马区)的定量信息,以跟踪轻度和扩散性脑损伤后的疾病进展。

Introduction

创伤性脑损伤(TBI)近年来越来越受到关注,因为很明显,这些脑损伤会导致终生认知、身体、情感和社会后果。尽管这种意识的提高,轻度TBI(mTBI,或脑震荡)仍然经常被少报和未确诊。MTBI被称为无声流行病,有mTBI病史的个人表现出较高的药物滥用率或精神问题2。由于损伤的漫不经其道和微妙性质,每年有一些 mTBI 患者未确诊,这在传统的计算机断层扫描 (CT) 或磁共振成像 (MRI) 扫描中通常不可见。这种脑损伤的放射性证据的缺乏导致了更先进的成像技术的发展,如扩散核磁共振成像,后者对微结构变化更敏感3。

扩散MRI允许在体内绘制微结构图,这种MRI技术在TBI研究4、5、6中得到了广泛的应用。从扩散张量中,计算小数各向异性(FA)和平均扩散率(MD),以量化损伤后微结构组织的变化。最近对 mTBI 患者的检查报告 FA 增加,受伤后 MD 减少,这可能表明斧肿胀7。相反,MD 的增加和 FA 的减少也被发现,并已被建议在水肿形成、斧头退化或纤维失调/中断8之后,在帕伦奇结构中造成破坏。这些混合的发现可以部分解释为mTBI由不同类型的冲击和严重性(例如,旋转加速度、钝力创伤、爆炸损伤或前者的组合)造成的显著临床异质性。然而,目前对于支撑微观结构组织变化的基本病理学和生物/细胞基础没有明确的共识。

动物模型提供了一个标准化和受控的设置,以更详细地研究损伤的生物机制和TBI后的修复。已经开发了几种TBI实验模型,代表了人类TBI的不同方面(例如,焦点与漫射创伤或旋转力造成的创伤)9,10。常用的动物模型包括受控皮质冲击(CCI)和横向流体打击损伤(LFPI)模型11,12。虽然实验参数可以很好地控制,但这些模型利用颅骨切除术来暴露大脑。颅骨或颅骨骨折在 mTBI 中并不常见;因此,这些实验模型对模拟 mTBI 无效。Marmarou等人13开发的冲击加速模型利用了从一定高度掉落到大鼠头部的重量,该模型由头盔保护。这种动物模型诱导类似的微结构改变和认知障碍,如在患有轻度创伤的患者中。因此,这种马尔马鲁降重模型适用于研究漫射mTBI14、15的成像生物标志物。

本报告演示了使用Marmarou降重模型在mTBI大鼠模型中应用先进的扩散MRI。首先演示如何诱发轻度和漫反射性创伤,然后使用扩散张量成像(DTI)模型进行分析。使用更先进的扩散模型[即扩散峰度成像(DKI)和白质道完整性(WMTI)模型]获得特定的生物信息。具体来说,使用传统的T2加权MRI和先进的扩散成像方案,在海马区进行轻度创伤和微结构变化评估。

Protocol

该协议已获得根特大学动物伦理委员会(ECD 15/44Aanv)的批准,所有实验均按照欧盟委员会的准则(第2010/63/EU号指令)进行。 1. 动物准备和头盔附件 称一只雌性Wistar H大鼠(±250克或12周龄),并在充满旋索兰混合物(5%)的小感应室中麻醉和 O2至少 1 分钟。 在大鼠的颈部注射0.05mg/kg丁丙诺啡,将其送回家庭笼子,并让先发制人的麻醉至少30分钟生效。注:在30分钟的等?…

Representative Results

在这项研究中,所有TBI大鼠(n= 10)在撞击中幸存下来,并在从麻醉23分离后15分钟内从撞击和麻醉中恢复过来。在CT图像上,没有证据表明颅骨骨折,T2图像没有显示任何异常,如出血,心室扩大,或水肿形成在挫伤部位1天后(图5)。因此,根据这些对解剖图像的目视检查,没有检测到大的焦点病变,证实了损伤的扩散性和轻度性。 通过将 T2 图像的叠加?…

Discussion

由于 mTBI 通常是扩散和细微损伤的结果,在 CT 和常规 MRI 扫描上没有异常,因此在轻度创伤后评估微结构损伤仍是一个挑战。因此,需要更先进的成像技术来可视化创伤的全部程度。扩散磁共振成像在TBI研究中的应用在过去十年中引起了更多的关注,其中扩散张量成像是最常用的5。DTI 模型的局限性是假设高斯扩散过程不是大脑微观结构的精确假设(由具有膜作为屏障的轴子和细胞组成…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢研究基金会 – 佛兰德斯(FWO)支持这项工作(授权号:G027815N)。

Materials

Induction of trauma
0.9% NaCl physiologic solution B Braun 394496
brass weight 450g custom made custom made diamter 18mm and 210 mm height
catheter Terumo Versatus-W 26G
ethilon II Ethicon EH7824 FS-3, 4-0, 3/8, 16mm
Matrass Foam to Size Type E
Plexiglas tube ISPA Plastics 416564 M1 PMMA XT GOO tube 25×19 mm (inner diamter 19 mm, minimal length of 1.50 m)
Preclinical CT scanner Molecubes X-cube
Steel helmet custom made custom made diameter 10 mm and 3 mm thickness
Vetbond Tissue Adhesive 3M 1469SB
Vetergesic (buprenorphin) EcuPhar VETERG20 0.05 mk/kg
Xylocaine 2% gel AstraZeneca Xylocaine 2% gel
Xylocaine (lidocain 2%) Aspen/AstraZeneca Xylocaine 2% gel 100 μl injection
Diffusion MRI
Preclinical MRI acquisition software Bruker Biospin MRI GmbH Z400_PV51_CENTOS55 ParaVision 5.1 MRI software
Preclinical MRI scanner Bruker Biospin MRI GmbH PharmaScan 70/16 7T MRI scanner
Quadrature volume coil Bruker Biospin MRI GmbH RF RES 300 1H 075/040 QSN TR Model No: 1P T13161C3
Small animal physiological monitoring unit Rapid Biomedical EKGHR02-0571-043C01 Unit for respiratory monitoring
Water-based heating unit Thermo Fisher Scientific Haake S 5P Model No: 1523051
Anaesthesia
Anaesthesia movable unit Veterenary technics BDO – Medipass, Ijmuiden
isoflurane: Isoflo Zoetis B506
Oxygen generator Veterenary technics 7F-3 BDO – Medipass, Ijmuiden
Diffusion image processing
Amide http://amide.sourceforge.net Version 1.0.5. Medical Imaging Data Examiner Toolbox (Loening AM, Gambhir SS, " AMIDE: A Free Software Tool for Multimodality Medical Image Analysis", Molecular Imaging, 2(3):131-137, 2003)
ExploreDTI http://www.exploredti.com Version 4.8.6 Toolbox for (pre-)processing and analysis of diffusion weighted MR images (Leemans A, Jeurissen B, Sijbers J, and Jones DK. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of Intl Soc Mag Reson Med, p. 3537, Hawaii, USA, 2009)
MRtrix3 http://www.mrtrix.org Version 3.0_RC3-86-g4b523b41 Toolbox for (pre-)processing and analysis of diffusion weighted MR images

References

  1. Carroll, L. J., et al. Systematic Review of the Prognosis After Mild Traumatic Brain Injury in Adults. Cognitive, Psychiatric, and Mortality Outcomes: Results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Archives of Physical Medicine and Rehabilitation. 95 (3), S152-S173 (2014).
  2. Buck, P. W. Mild Traumatic Brain Injury: A Silent Epidemic in Our Practices. Health & Social Work. 36 (4), 299-302 (2011).
  3. Bodanapally, U. K., Sours, C., Zhuo, J., Shanmuganathan, K. Imaging of Traumatic Brain Injury. Radiologic Clinics of North America. 53 (4), 695-715 (2015).
  4. Basser, P. J., Mattiello, J., LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophysical Journal. 66 (1), 259-267 (1994).
  5. Hulkower, M. B., Poliak, D. B., Rosenbaum, S. B., Zimmerman, M. E., Lipton, M. L. A Decade of DTI in Traumatic Brain Injury: 10 Years and 100 Articles Later. American Journal of Neuroradiology. 34 (11), 2064-2074 (2013).
  6. Hutchinson, E. B., Schwerin, S. C., Avram, A. V., Juliano, S. L., Pierpaoli, C. Diffusion MRI and the detection of alterations following traumatic brain injury. Journal of Neuroscience Research. 96 (4), 612-625 (2018).
  7. Wallace, E. J., Mathias, J. L., Ward, L. Diffusion tensor imaging changes following mild, moderate and severe adult traumatic brain injury: a meta-analysis. Brain Imaging and Behavior. , 1-15 (2018).
  8. Rutgers, D. R., et al. White Matter Abnormalities in Mild Traumatic Brain Injury: A Diffusion Tensor Imaging Study. American Journal of Neuroradiology. 29 (3), 514-519 (2008).
  9. Bondi, C. O., et al. Found in translation: Understanding the biology and behavior of experimental traumatic brain injury. Neuroscience & Biobehavioral Reviews. 58, 123-146 (2015).
  10. Shultz, S. R., et al. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neuroscience & Biobehavioral Reviews. 76, 396-414 (2017).
  11. Osier, N. D., Dixon, C. E. The Controlled Cortical Impact Model: Applications, Considerations for Researchers, and Future Directions. Frontiers in Neurology. 7 (AUG), (2016).
  12. Lyeth, B. G. Historical Review of the Fluid-Percussion TBI Model. Frontiers in Neurology. 7 (DEC), 1-7 (2016).
  13. Marmarou, A., Foda, M. A. A. -. E., van den Brink, W., Campbell, J., Kita, H., Demetriadou, K. A new model of diffuse brain injury in rats. Journal of Neurosurgery. 80 (2), 291-300 (1994).
  14. Heim, L. R., et al. The Invisibility of Mild Traumatic Brain Injury: Impaired Cognitive Performance as a Silent Symptom. Journal of Neurotrauma. 34 (17), 2518-2528 (2017).
  15. Zohar, O., Rubovitch, V., Milman, A., Schreiber, S., Pick, C. G. Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiol Exp (Wars. 71 (1), 36-45 (2011).
  16. Pierpaoli, C., Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 36 (6), 893-906 (1996).
  17. Jensen, J. H., Helpern, J. A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR in Biomedicine. 23 (7), 698-710 (2010).
  18. Fieremans, E., Jens, H., Jensen, J. A. H. White matter characterization with diffusional kurtosis imaging. NeuroImage. 58, 177-188 (2011).
  19. Leemans, A. . Explore DTI. , (2019).
  20. Loening, A. M., Gambhir, S. S. AMIDE: A Free Software Tool for Multimodality Medical Image Analysis. Molecular Imaging. 2 (3), 131-137 (2003).
  21. Veraart, J., et al. Denoising of diffusion MRI using random matrix theory. NeuroImage. 142, 394-406 (2016).
  22. Veraart, J., Fieremans, E., Novikov, D. S. Diffusion MRI noise mapping using random matrix theory. Magnetic Resonance in Medicine. 76 (5), 1582-1593 (2016).
  23. Braeckman, K., et al. Dynamic changes in hippocampal diffusion and kurtosis metrics following experimental mTBI correlate with glial reactivity. NeuroImage: Clinical. 21 (August 2018), 101669 (2019).
  24. Jones, D. K., Knösche, T. R., Turner, R. White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. NeuroImage. 73, 239-254 (2013).
  25. . Matlab code DKI and WMTI model Available from: https://github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging (2019)
check_url/60012?article_type=t

Play Video

Cite This Article
Braeckman, K., Descamps, B., Vanhove, C. Advanced Diffusion Imaging in The Hippocampus of Rats with Mild Traumatic Brain Injury. J. Vis. Exp. (150), e60012, doi:10.3791/60012 (2019).

View Video