Summary

干细胞衍生病毒Ag特异性T淋巴细胞抑制小鼠HBV复制

Published: September 25, 2019
doi:

Summary

这里介绍了一个协议,通过利用干细胞衍生病毒抗原(Ag)特异性T淋巴细胞的采用细胞转移(ACT),有效抑制小鼠乙型肝炎病毒(HBV)复制。这个程序可以适应潜在的基于ACT的HBV感染免疫治疗。

Abstract

乙型肝炎病毒(HBV)感染是一个全球性的健康问题。全世界有超过3.5亿人感染乙肝病毒,乙肝病毒感染仍然是肝癌的主要原因。这是一个重大关切,特别是在发展中国家。免疫系统未能对乙肝病毒进行有效反应,导致慢性感染。虽然乙肝疫苗存在,新的抗病毒药物正在研制中,但消灭病毒储存细胞仍然是一个主要的健康主题。本文介绍的一种用于生成病毒抗原 (Ag) – 特异性 CD8细胞毒性 T 淋巴细胞 (CTLs) 的方法,该细胞来自诱导多能干细胞 (iPSC)(即 iPSC-CTLs),能够抑制 HBV 复制。通过将HBV表达质粒(pAAV/HBV1.2)水动力注射到肝脏,在小鼠中有效诱导HBV复制。然后,HBV表面Ag特异性小鼠iPSC-CTLs被采用转移,这极大地抑制了乙肝病毒在肝脏和血液中的复制,并防止了肝细胞中HBV表面Ag表达。该方法在水动力注射后证明小鼠HBV复制,干细胞衍生的病毒Ag特异性CTL可以抑制HBV复制。该协议为HBV免疫治疗提供了一种有用的方法。

Introduction

急性感染后,适应性免疫系统(即体液和细胞免疫)控制与HBV相关的急性肝炎的大部分。然而,在乙肝病毒流行地区的一些人无法消除病毒,随后转化为慢性个体。全球超过25%的慢性病患者(超过2.5亿人)发展为渐进性肝病,导致肝硬化和/或肝细胞癌(HCC)1。因此,尽管现有疫苗2和许多抗病毒药物正在研制中,但根除持续感染的细胞仍然是一个普遍的健康问题。HBV感染的标准治疗包括IFN-α、核苷和核苷酸类似物。这些制剂具有直接的抗病毒活性和免疫调节能力。然而,HBe抗原(Ag)的血清转化+具有抗HBe抗体(Ab)的载体和血清HBV脱氧核糖核酸(DNA)的流失在大约20%的治疗患者中单独出现,病毒的整个免疫控制经核实,HBsAg的剥夺不超过5%3。此外,对治疗的反应往往不持久。使用重组HBs Ag进行预防性疫苗接种在预防感染方面非常有效,但治疗性HBs Ag疫苗接种无效。显然,T细胞介导的免疫反应在控制HBV感染和肝损伤方面起着关键作用;然而,在慢性肝炎患者中,HBV反应性T细胞经常被删除、功能失调或转换耗尽4,5,6。因此,在持续性乙肝病毒感染者中,没有试图通过抗病毒疗法、免疫调节细胞因子或治疗性免疫恢复HBV特异性免疫(即T细胞基免疫)的努力取得了成功。

HBV AG特异性T细胞的收养细胞转移(ACT)是一种有效的治疗方法,旨在最终根除剩余的肝细胞wih HBV7,8。HBV特异性CTP在HBV感染小鼠中已被证明会导致暂时性、轻度肝炎,肝细胞核糖核酸(RNA)转录本的显著下降。在这些研究中,CTL没有抑制HBV基因的转录,但提高了HBV录9的降解。HBV特异性CTL对预防病毒感染和调解HBV10、11的清除非常重要。对于基于ACT的补救措施,HBV特异性T细胞在体外扩张,具有高反应性,用于体内再定居,建议其为理想的方法12、13、14;然而,目前的方法在产生、分离和从患者身上产生、分离和生长适当数量的HBV特异性T细胞的能力方面受到限制,以进行潜在的治疗。

尽管临床试验通过针对受HBV病毒感染的肝细胞的工程T细胞提供细胞治疗的安全性、实用性和前瞻性治疗活性,但人们担心这种不良影响由于错误配对T细胞受体(TCR)15、16、非特异性TCR17的离目标Ag识别和由嵌合Ag受体(CAR)对靶向脱毒性的交叉反应,自体免疫反应发生18,19与健康组织。目前,转基因T细胞,只有短期的持久性在体内,通常是中间或后期效应T细胞。迄今为止,多能干细胞(PSCs)是唯一可用于产生大量天真的单型Ag特异性T细胞20、21、22、23的来源。诱导PSCs(iPSCs)通过使用多个转录因子的基因转导,从患者的体细胞中转换。因此,iPSC具有与胚胎干细胞(ESCs)24相似的特性。由于具有无限自我更新能力的灵活性和可能性,除了组织替代外,基于iPSC的治疗可以广泛应用于再生医学。此外,iPSC的底层军团可能会显著改善目前的基于细胞的疗法。

该方法的总体目标是从 iPSC(即 iPSC-CTL)生成大量 HBV 特异性 CTL,用于基于 ACT 的免疫治疗。与替代技术的优点是,HBV 特异性 iPSC-CTL 具有单型 TCR 和天真的表型,这导致在 ACT 之后产生更多的记忆 T 细胞发育。证明HBV特异性iPSC-CTL的ACT可增加肝功能CD8+T细胞的迁移,减少被管理小鼠肝脏和血液中的HBV复制。这种方法揭示了病毒Ag特异性iPSC-CTLs在HBV免疫治疗中的潜在用途,并可能用于生成用于病毒免疫治疗的其他病毒Ag特异性iPSC-T细胞。

Protocol

所有动物实验均获得德克萨斯A&M大学动物护理委员会(IACUC;#2018-0006)的批准,并符合实验室动物护理评估和认证协会的指导方针。小鼠在6-9周大期间使用。 1. 从 iPSC 生成病毒 Ag 特异性 CD8+ T 细胞(iPSC-CD8+ T 细胞) 逆转录病毒结构的创建注:TCR +和β基因与2A自结序列相关。逆转录病毒载体 MSCV-IRES-DsRed (MiDR) 是 DsRed= 23。<…

Representative Results

如此处所示,HBV病毒Ag特异性iPSC-CD8+ T细胞由体外培养系统生成。在这些病毒Ag特异性iPSC-CD8+ T细胞的ACT后,严重抑制HBV复制在鼠模型中(补充文件1)。小鼠 iPSC 与 MIDR 抗逆转录病毒结构进行转导,编码人-小鼠混合 HBV TCR 基因(HBs183-191-特异性,s183),然后基因转导 iPSC 与表达 Notch 配体(DL1 和 DL4)的 OP9-DL1/DL4 细胞共同培养分子在rFlt3L和rIL-7的存在。在体外共?…

Discussion

该协议提供了一种生成病毒性Ag特异性iPSC-CTLs的方法,用作ACT,以抑制小鼠模型中的HBV复制。在慢性HBV感染中,病毒基因组形成一个稳定的迷你染色体,即共价闭合的圆形DNA(cccDNA),可以在整个肝细胞的生命周期内持续。靶向病毒小染色体的清除可能导致慢性HBV感染的治愈。目前的抗病毒治疗针对病毒逆转录酶,但很少建立由cccDNA驱动的HBV复制的免疫控制。HBV 特异性 CD8 CTL 可以调解?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢多伦多总医院研究所的Adam J Gehring博士为HBs183-91(S183)(FLLTRILTI)提供cDNA-特定A2限制人-鼠杂交TCR基因,以及台湾国立大学的陈佩杰博士提供pAAV/HBV 1.2 结构。这项工作得到国家卫生补助机构R01AI121180、R01CA221867和R21AI109239到J.S的支持。

Materials

HHD mice Institut Pasteur, Paris, France H-2 class I knockout, HLA-A2.1-transgenic (HHD) mice
iPS-MEF-Ng-20D-17 RIKEN Cell Bank APS0001
SNL76/7 ATCC SCRC-1049
OP9 ATCC CRL-2749
pAAV/HBV1.2 plasmid Dr. Dr. Pei-Jer Chen (National Taiwan University Hospital, Taiwan) HBV DNA construct
HBs183-91(s183) (FLLTRILTI)-specific TCR genes Dr. Adam J Gehring (Toronto General Hospital Research Institute, Toronto, Canada) FLLTRILTI-specific A2-restricted human-murine hybrid TCR genes (Vα34 and Vβ28)
OVA257–264-specific TCR genes Dr. Dario A. Vignali (University of Pittsburgh, PA) SIINFEKL-specific H-2Kb-restricted TCR genes
Anti-CD3 (17A2) antibody Biolegend 100236
Anti-CD44 (IM7) antibody BD Pharmingen 103012
Anti-CD4 (GK1.5) antibody Biolegend 100408
Anti-CD8 (53-6.7) antibody Biolegend 100732
Anti-IFN-γ (XMG1.2) antibody Biolegend 505810
Anti-TNF-a (MP6-XT22) antibody Biolegend 506306
α-MEM Invitrogen A10490-01
Anti-HBs antibody Thermo Fisher MA5-13059
ACK Lysis buffer Lonza 10-548E
Brefeldin A Sigma B7651
DMEM Invitrogen ABCD1234
FBS Hyclone SH3007.01
FACSAria Fusion cell sorter BD 656700
Gelatin MilliporeSigma G9391
GeneJammer Agilent 204130
HLA-A201-HBs183-91-PE pentamer Proimmune F027-4A – 27
HRP Anti-Mouse Secondary Antibody Invitrogen A27025
mFlt-3L Peprotech 250-31L
mIL-7 Peprotech 217-17
Nuclease S7 Roche 10107921001
Paraformaldehyde MilliporeSigma P6148-500G Caution: Allergenic, Carcenogenic, Toxic
Permeabilization buffer Biolegend 421002
Polybrene MilliporeSigma 107689
ProLong™ Gold Antifade Mountant with DAPI Invitrogen P36931
QIAamp MinElute Virus Spin Kit Qiagen 57704

References

  1. Scaglione, S. J., Lok, A. S. Effectiveness of hepatitis B treatment in clinical practice. Gastroenterology. 142 (6), 1360-1368 (2012).
  2. Osiowy, C. From infancy and beyond… ensuring a lifetime of hepatitis B virus (HBV) vaccine-induced immunity. Human Vaccines & Immunotherapeutics. 14 (8), 2093-2097 (2018).
  3. Gish, R. G., et al. Loss of HBsAg antigen during treatment with entecavir or lamivudine in nucleoside-naive HBeAg-positive patients with chronic hepatitis B. Journal of Viral Hepatitis. 17 (1), 16-22 (2010).
  4. Kurktschiev, P. D., et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. Journal of Experimental Medicine. 211 (10), 2047-2059 (2014).
  5. Fisicaro, P., et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology. 138 (2), 682-693 (2010).
  6. Schurich, A., et al. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PLoS Pathogens. 9 (3), 1003208 (2013).
  7. Gehring, A. J., et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. Journal of Hepatology. 55 (1), 103-110 (2011).
  8. Xia, Y., et al. Interferon-gamma and Tumor Necrosis Factor-alpha Produced by T Cells Reduce the HBV Persistence Form, cccDNA, Without Cytolysis. Gastroenterology. 150 (1), 194-205 (2016).
  9. Huang, L. R., Wu, H. L., Chen, P. J., Chen, D. S. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proceedings of the National Academy of Sciences U.S.A. 103 (47), 17862-17867 (2006).
  10. Wong, P., Pamer, E. G. CD8 T cell responses to infectious pathogens. Annual Review of Immunology. 21, 29-70 (2003).
  11. Murray, J. M., Wieland, S. F., Purcell, R. H., Chisari, F. V. Dynamics of hepatitis B virus clearance in chimpanzees. Proceedings of the National Academy of Sciences USA. 102 (49), 17780-17785 (2005).
  12. Hinrichs, C. S., et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proceedings of the National Academy of Sciences U.S.A. 106 (41), 17469-17474 (2009).
  13. Hinrichs, C. S., et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood. 117 (3), 808-814 (2011).
  14. Kerkar, S. P., et al. Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies. Journal of Immunotherapy. 34 (4), 343-352 (2011).
  15. Kuball, J., et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood. 109 (6), 2331-2338 (2007).
  16. van Loenen, M. M., et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proceedings of the National Academy of Sciences USA. 107 (24), 10972-10977 (2010).
  17. Cameron, B. J., et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Science Translational Medicine. 5 (197), (2013).
  18. Fedorov, V. D., Themeli, M., Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Science Translational Medicine. 5 (215), (2013).
  19. Maus, M. V., et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunolology Research. 1 (1), 26-31 (2013).
  20. Haque, R., et al. Programming of regulatory T cells from pluripotent stem cells and prevention of autoimmunity. Journal of Immunology. 189 (3), 1228-1236 (2012).
  21. Vizcardo, R., et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell. 12 (1), 31-36 (2013).
  22. Nishimura, T., et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell. 12 (1), 114-126 (2013).
  23. Lei, F., et al. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance. Cancer Research. 71 (14), 4742-4747 (2011).
  24. Kim, J. B., et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 136 (3), 411-419 (2009).
  25. Lei, F., Haque, R., Xiong, X., Song, J. Directed differentiation of induced pluripotent stem cells towards T lymphocytes. Journal of Visualized Experiments. (63), e3986 (2012).
  26. Lei, F., Haque, M., Sandhu, P., Ravi, S., Ni, Y., Zheng, S., Fang, D., Jia, H., Yang, J. M., Song, J. Development and characterization of naive single-type tumor antigen-specific CD8+ T lymphocytes from murine pluripotent stem cells. OncoImmunology. 6, (2017).
  27. Haque, M., et al. Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplantation. 25 (5), 811-827 (2016).
  28. Tan, A. T., et al. Use of Expression Profiles of HBV DNA Integrated Into Genomes of Hepatocellular Carcinoma Cells to Select T Cells for Immunotherapy. Gastroenterology. , (2019).
  29. Wu, L. L., et al. Ly6C(+) Monocytes and Kupffer Cells Orchestrate Liver Immune Responses Against Hepatitis B Virus in Mice. Hepatology. , (2019).
  30. Haque, M., et al. Stem cell-derived tissue-associated regulatory T cells suppress the activity of pathogenic cells in autoimmune diabetes. Journal of Clinical Investigation Insights. , (2019).
  31. Chisari, F. V., et al. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proceedings of the National Academy of Sciences USA. 84 (19), 6909-6913 (1987).
  32. Wirth, S., Guidotti, L. G., Ando, K., Schlicht, H. J., Chisari, F. V. Breaking tolerance leads to autoantibody production but not autoimmune liver disease in hepatitis B virus envelope transgenic mice. Journal of Immunology. 154 (5), 2504-2515 (1995).
check_url/60043?article_type=t

Play Video

Cite This Article
Xiong, X., Lei, F., Haque, M., Song, J. Stem Cell-Derived Viral Ag-Specific T Lymphocytes Suppress HBV Replication in Mice. J. Vis. Exp. (151), e60043, doi:10.3791/60043 (2019).

View Video