Summary

玻璃到金属密封结构的优化密封工艺和实时监控

Published: September 02, 2019
doi:

Summary

详细介绍了优化密封工艺和实现金属-玻璃密封 (MTGS) 结构实时监控的关键程序。嵌入式光纤布拉格光栅 (FBG) 传感器旨在通过同时环境压力监测实现 MTGS 中温度和高电平残余应力的在线监控。

Abstract

残余应力是保持玻璃-金属密封结构的密封性和坚固性的重要因素。本报告的目的是展示一种新颖的协议,在不破坏密封材料的绝缘性和密封性的情况下,对玻璃-金属密封结构中的残余应力进行表征和测量。在本研究中,使用了一种飞向激光刻板的光纤布拉格光栅传感器。测量的玻璃-金属密封结构由金属外壳、密封玻璃和科瓦尔导体组成。为了使测量物有所值,探索金属-玻璃密封(MTGS)结构的具体热处理,以获得最佳密封性模型。然后,FBG 传感器嵌入密封玻璃路径中,当温度冷却至 RT 时,与玻璃很好地融合。FBG 的布拉格波长随密封玻璃中产生的残余应力而移动。为了计算残余应力,应用了布拉格波长偏移与应变的关系,并采用有限元法使结果可靠。在高温高压等不同载荷下进行密封玻璃残余应力的在线监测实验,以扩大该协议在恶劣环境下的功能。

Introduction

金属到玻璃密封是一种复杂的技术,结合了跨学科的知识(即力学、材料和电气工程),并广泛应用于航空航天1、核能2和生物医学应用3.与有机材料密封结构相比,具有更高的温度和压力耐久性等独特优势。根据热膨胀系数(CTE)的差异,MTGS可分为两种类型:匹配密封和不匹配的密封4。至于匹配的密封,金属(α金属)和密封玻璃(*玻璃)的CTE几乎相同,以减少密封材料的热应力。但是,为了在恶劣环境(即高温高压)下保持密封结构的良好密封性和机械坚固性,不匹配的密封件比匹配的密封件表现出更好的性能。由于金属和α玻璃之间的差异,在MTGS结构退火过程后,密封玻璃会产生残余应力。如果残余应力过大(甚至超过阈值),密封玻璃会显示小缺陷,如裂纹。如果残余应力过小,密封玻璃就会失去密封性。因此,残余应力值是一个重要的测量指标。

对MTGS结构残余应力的分析引起了世界各地许多群体的研究兴趣。轴向应力和径向应力的数值模型是建立在薄壳理论5的基础上的。应用有限元法求在退火过程后MTGS结构的全局应力分布,与实验结果6、7一致。但是,由于涉及小尺寸和电磁干扰的限制,许多高级传感器不适合这些情况。报告了压痕裂纹长度法,以测量MTG密封材料中的残余应力;然而,这种方法具有破坏性,不能实现玻璃应力变化的实时在线监测。

光纤布拉格光栅(FBG)传感器体积小(±100 μm),耐电磁干扰和恶劣环境8此外,纤维的成分与密封玻璃(SiO 2)的部件相似,因此FBG传感器对密封材料的密封性和绝缘性没有影响。FBG传感器已应用于复合结构9、10、11的残余应力测量,结果表明具有良好的测量精度和信号响应。同步的温度和应力测量可以通过光纤布拉格光栅阵列在一个光纤12,13。

本研究演示了一种基于FBG传感器的新型方案。通过调整最高热温,对特殊MTGS结构进行了适当的准备,以确保MTGS结构的良好密封性。FBG 传感器嵌入密封玻璃的制备路径中,在热处理后将 FBG 和玻璃熔合在一起。然后,通过FBG的布拉格波长偏移获得残余应力。带 FBG 传感器的 MTGS 结构置于高温和高压环境中,以实现在不断变化的负载下对残余应力进行在线监控。在本研究中,概述了使用 FBG 传感器生成 MTS 结构的详细步骤。结果表明了该新方案的可行性,为MTGS结构故障诊断奠定了基础。

Protocol

1. 生产具有良好密封性的MTGS结构 注:MTGS结构的程序包括组合结构部件的制剂、热处理过程以及MTGS样品性能检查。完整的 MTGS 结构由钢壳、科瓦尔导体和密封玻璃组成。分别参见图 1和表1所示的图表和维度。 将颗粒状玻璃粉末(±1.1 g)倒入模具中,然后将模具放入压榨机中,以加工颗粒玻璃,如图2a,b<…

Representative Results

从图5的结果中,探讨了生产具有高压耐久性MTGS模型的标准热处理,该模型可以满足检查要求(即透光、压力耐久性、SEM等)。因此,生产的MTGS结构可以应用于在恶劣的环境中保持密封性。 FBG可以很好地与MTGS结构融合,密封玻璃中的残余应变将在热处理后通过布拉格波长偏移来反射,如图6所示。使用方程1和方?…

Discussion

在高温高压下MTGS结构密封材料应力测量的关键步骤包括:1)使用FBG传感器制造MTGS模型,其中光栅区域位于密封玻璃中间;2)采用标准热处理工艺加热整个模型,模型冷却至RT后,FBG传感器将与MTGS模型很好地融合,残余应力可以通过布拉格波长偏移进行测量;3) 将完整的模型放入熔炉中,体验不断变化的热负荷,然后通过一条光纤上的两个FBG阵列的波长偏移差实现在线同时温度和应力监测;4)将整…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家科技重大项目(ZX069)的支持。

Materials

ABAQUS Dassault SIMULA ABAQUS6.14-5 The software to carry out numerical simulation.
Fiber Bragg grating sensors Femto Fiber Tec FFT.FBG.S.00.02 Single apodized FBG
Fusion splicer Furukawa Information Technologies and Telecommunications S123M12 FITEL's line of fusion splicers provides an excellent solution for both field and factory splicing applications。
Glass powder Shenzhen Sialom Advanced Materials Co.,Ltd LC-1 A kind of low melting-point glass powder (380℃).
Graphite mold Machining workshop of Tsinghua University Graphite The mold to locate each part of the metal-to-glass structure.
Heating furnace Tianjin Zhonghuan Electric Furnace Technology Co., Ltd SK-G08123-L vertical tubular furnace
Kovar conductor Shenzhen Thaistone Technology Co., Ltd 4J29 A common material used for the electrical penetration in the metal-to-glass seal structure
Optical interrogator Wuhan Gaussian Optics CO.,LTD OPM-T400 FBG spectrum analysis modules
Pro/Engineer Parametric Technology Corporation PROE5.0 The software to establish the 3D geometry.
Steel shell Beijing Xiongchuan Technology Co., Ltd 316 stainless steel A kind of austenitic stainless steel

References

  1. Alves, F. J., Baptista, A. M., Marques, A. T. Metal and ceramic matrix composites in aerospace engineering. Advanced Composite Materials for Aerospace Engineering. , 59-99 (2016).
  2. Dai, S., et al. Sealing Glass-Ceramics with Near Linear Thermal Strain, Part I: Process Development and Phase Identification. Journal of the American Ceramic Society. 99 (11), 3719-3725 (2016).
  3. Karmakar, B. Glasses and glass-ceramics for biomedical applications. Functional Glasses and Glass-Ceramics. , 253-280 (2017).
  4. Shekoofa, O., et al. Analysis of residual stress for mismatch metal–glass seals in solar evacuated tubes. Solar Energy Materials and Solar Cells. 128, 421-426 (2014).
  5. Lei, D., Wang, Z., Li, J. The calculation and analysis of glass-to-metal sealing stress in solar absorber tube. Renewable Energy. 35 (2), 405-411 (2010).
  6. Lei, D., Wang, Z., Li, J. The analysis of residual stress in glass-to-metal seals for solar receiver tube. Materials & Design. 31, 1813-1820 (2010).
  7. Dai, S., et al. Sealing glass-ceramics with near-linear thermal strain, part III: Stress modeling of strain and strain rate matched glass-ceramic to metal seals. Journal of the American Ceramic Society. 100 (8), 3652-3661 (2017).
  8. Hill, K. O., Meltz, G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology. 15 (8), 1263-1276 (1997).
  9. Prussak, P., et al. Evaluation of residual stress development in FRP-metal hybrids using fiber Bragg grating sensors. Production Engineering – Research and Development. 12, 259-267 (2018).
  10. Hu, H., et al. Investigation of non-uniform gelation effects on residual stresses of thick laminates based on tailed FBG sensor. Composite Structures. 202, 1361-1372 (2018).
  11. Colpo, F., Humbert, L., Botsis, J. Characterisation of residual stresses in a single fibre composite with FBG sensor. Composites Science & Technology. 67 (9), 1830-1841 (2007).
  12. Jin, L., et al. An embedded FBG sensor for simultaneous measurement of stress and temperature. IEEE Photonics Technology Letters. 18 (1), 154-156 (2005).
  13. Sampath, U., et al. Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions. Applied Optics. 57 (3), 492-497 (2018).
  14. Kersey, A., et al. Fiber grating sensors. Journal of Lightwave Technology. 15 (8), 1442-1463 (1997).
  15. Mihailov, S. J. Fiber Bragg Grating Sensors for Harsh Environments. Sensors. 12 (12), 1898-1918 (2012).
  16. Morey, W. W., Meltz, G., Weiss, J. M. Recent advances in fiber-grating sensors for utility industry applications. Proceedings of SPIE – The International Society for Optical Engineering. , 90-98 (1996).
  17. Jin, X., Yuan, S., Chen, J. On crack propagation monitoring by using reflection spectra of AFBG and UFBG sensors. Sensors and Actuators A: Physical. 285, 491-500 (2019).
  18. Kakei, A., et al. Evaluation of delamination crack tip in woven fibre glass reinforced polymer composite using FBG sensor spectra and thermo-elastic response. Measurement. 122, 178-185 (2018).
  19. Zhang, W., et al. The Analysis of FBG Central Wavelength Variation with Crack Propagation Based on a Self-Adaptive Multi-Peak Detection Algorithm. Sensors. 19 (5), 1056 (2019).
check_url/60064?article_type=t

Play Video

Cite This Article
Fan, Z., Hu, K., Huang, Z., Zhang, Y., Yan, H. Optimized Sealing Process and Real-Time Monitoring of Glass-to-Metal Seal Structures. J. Vis. Exp. (151), e60064, doi:10.3791/60064 (2019).

View Video