Summary

使用噬菌体显示肽库筛选和识别针对纤维细胞生长因子受体2的小肽

Published: September 30, 2019
doi:

Summary

在此,我们提出了使用噬菌体显示肽库筛选与 FGFR2 结合的小肽的详细方案。我们进一步分析了所选肽在体外对FGFR2的亲和力及其抑制细胞增殖的能力。

Abstract

人类纤维细胞生长因子受体(FGFR)家族由四个成员组成,即FGFR1、FGFR2、FGFR3和FGFR4,它们参与各种生物活动,包括细胞增殖、存活、迁移和分化。由于突变或基因扩增事件,FGFR信号通路中的几个畸变在不同类型的癌症中被识别出来。因此,最近的研究侧重于开发涉及FGFRs治疗靶向的策略。 目前在临床前和临床开发的不同阶段,目前的FGFR抑制剂包括酪氨酸激酶的小分子抑制剂或单克隆抗体,管道中只有几种肽抑制剂。在这里,我们提供了一个协议,使用噬菌体显示技术来筛选小肽作为FGFR2的拮抗剂。简单地说,在涂有FGFR2的板中孵育出一个噬菌体显示肽库。随后,未结合的噬菌体被TBST(TBS = 0.1%[v/v]补间-20)洗掉,并结合噬菌体用0.2M甘氨酸-HCl缓冲液(pH 2.2)洗净。洗脱的噬菌体被进一步放大,并用作下一轮生物泛化的输入。经过三轮生物盘分,通过DNA测序确定了单个噬菌体克隆的肽序列。最后,对筛选的肽进行合成,分析亲和力和生物活性。

Introduction

纤维细胞生长因子受体(FGFRs)在细胞增殖、伤口愈合和体内血管生成中起着关键作用。在各种肿瘤2、3、4、5中观察到的FGFR信号异常激活包括基因扩增、基因突变、染色体畸变和过量配体分泌6.许多针对FGFRs的抑制剂在临床试验中显示出有希望的治疗效果,主要分为三类:(1)小分子激酶抑制剂,它与FGFR的细胞内域结合,(2)针对细胞外段和(3)FGF配体陷阱6。虽然几种小分子激酶抑制剂在体外和体内均具有良好的治疗效果,但大部分靶点特异性较差,并表现出高血压8等不良反应。大多数拮抗剂是单克隆抗体9、10和多肽11。肽具有比小分子的优势,由于其特异性和较低的副作用。与蛋白质药物12相比,它们还保留了细胞渗透性,不会在特定器官中积累。因此,靶向小肽是有效和前瞻性的治疗剂。

噬菌体显示技术是一个简单但强大的工具,用于识别小肽,它可以结合到给定的分子13,14,15。我们使用一个噬菌体显示肽库,它基于一个简单的M13噬菌体,在尾部显示超过109个不同的肽序列,以便与目标分子结合(见材料表)16。由于噬菌体对给定分子的亲和力高,未结合的噬菌体可以被冲走,并且只保留与所需短肽紧密结合的噬菌体。给定的分子靶点可以固定蛋白质17,18,碳水化合物,培养细胞,甚至无机材料19,20。一个令人兴奋的案例是,使用噬菌体显示技术21在体内选择器官特异性肽。噬菌体显示技术的优点包括高通量、易操作性、低成本和广泛的应用22。

在这项研究中,我们使用噬菌体显示库提供了筛选与固定蛋白(FGFR2)结合的小肽的详细方案。通过测量通过同质滴度测定仪(ITC)获得的肽对FGFR2的亲和力,以及通过细胞增殖测定的生物活性,也检查了该技术的疗效。该方法可以扩展用于筛选与碳水化合物、培养细胞甚至无机材料结合的小肽。

Protocol

1. 试剂制备 LB(溶菌肉汤)介质:在H2O高压灭菌剂100 mL中溶解1克胰腺酮、0.5克酵母提取物和0.5克NaCl,并储存在4°C处。 四环素库存:在1:1乙醇中制备20mg/mL:H2O.在-20°C储存,并在使用前涡流。 IPTG/X-gal 溶液:将 0.5 g 的 IPTG(二丙基 β-D-1-硫丙酮)和 0.4 g X-gal(5-溴-4-氯-3-indolyl β-D-角质苷)混合在 10 mL 的 DMF(二甲基甲酰胺)中。溶液可在黑暗中在-20°C下储存…

Representative Results

获得针对FGFR2的高亲和力小肽。 为了筛选针对FGFR2的噬菌体,本研究使用了一个Ph.D.-7库。工作流的原理图表示形式如图1所示。在此过程中,噬菌体输入(PFU)的数量保持不变,而FGFR2蛋白的涂层浓度逐渐降低。噬菌体命名结果表明,恢复的噬菌体数量逐渐增加,3轮后,与第一轮相比增加了65倍(表1)。 接?…

Discussion

组合噬菌体库是一种强大而有效的工具,用于高通量筛选新型肽,这种肽可以结合目标分子并调节其功能13。目前,噬菌体显示肽库有着广泛的应用。例如,它们可用于选择与受体蛋白23结合的生物活性肽23、非蛋白靶点24、25、疾病特异性抗原模仿13、细胞特异性肽26、<sup cl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了广州市科技计划(第201620160403039号)的支持。

Materials

0.22 μm Filter Merck Millipore MPGP002A1
35 cm2 Small dish Thermo 150460
70% Ethanol Guangzhou chemical reagent factory 64-17-5
-96 gIII sequencing primer Synthesis from Sangon Biotech (Shanghai) Co., Ltd.
96-well plate Nest 701001-2
Agar Beyotime ST004D
Bacto-Tryptone Oxoid L0037
BALB/c 3T3 cells ATCC CRL-­6587
BSA Biodragon BD-M10110
CCK-8 kit DOJINDO CK04
DMEM Hyclone sh30243.01
DMF Newprobe PB10247
EDTA Invitrogen 15576028
FGF2 Protein Sino Biological Inc. 10014-HNAE Purity >95%
Glycine Sigma G8898-1KG
IPTG Beyotime ST097
ITC200 system MicroCal Omega
NaCl Sigma S6191
NaHCO3 Guangzhou chemical reagent factory 144-55-8
NaI Bidepharm BD40879
NaOH Guangzhou chemical reagent factory 1310-73-2
PEG–8000 Sigma P2139-250
Ph.D.-7 phage display peptide library kit New England BioLabs E8100S Containing the Ph.D.-7 phage library, E. coli ER2738 host strain and M13KE control phage
Recombinant FGFR2 extracellular domain proteins Sino Biological Inc. 10824-H08H Purity > 97%
Small peptide Synthesis from GL Biochem Ltd. (Shanghai, China)
Tetracycline Sigma S-SHS-5
Tris Sigma SLF-T1503
Tween-20 Beyotime ST825
X-gal Beyotime ST912
Yeast extract Oxoid LP0021

References

  1. Eswarakumar, V. P., Lax, I., Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews. 16 (2), 139-149 (2005).
  2. Turner, N., Grose, R. Fibroblast growth factor signaling: from development to cancer. Nature Reviews Cancer. 10 (2), 116-129 (2010).
  3. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature. 490 (7418), 61-70 (2012).
  4. Matsumoto, K., et al. FGFR2 gene amplification and clinicopathological features in gastric cancer. British Journal of Cancer. 106 (4), 727-732 (2012).
  5. Weiss, J., et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Science Translational Medicine. 2 (62), 62ra93 (2010).
  6. Babina, I. S., Turner, N. C. Advances and challenges in targeting FGFR signaling in cancer. Nature Reviews Cancer. 17 (5), 318-322 (2017).
  7. Katoh, M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nature Reviews Clinical Oncology. 16 (2), 105-122 (2019).
  8. Soria, J. C., et al. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Annals of Oncology. 25 (11), 2244-2251 (2014).
  9. French, D. M., et al. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS ONE. 7 (5), e36713 (2012).
  10. Martinez-Torrecuadrada, J., et al. Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation. Clinical Cancer Research. 11 (17), 6280-6290 (2005).
  11. Palamakumbura, A. H., et al. Lysyl oxidase propeptide inhibits prostate cancer cell growth by mechanisms that target FGF-2-cell binding and signaling. Oncogene. 28 (38), 3390-3400 (2009).
  12. Ladner, R. C., Sato, A. K., Gorzelany, J., de Souza, M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discovery Today. 9 (12), 525-529 (2004).
  13. Wu, C. H., Liu, I. J., Lu, R. M., Wu, H. C. Advancement and applications of peptide phage display technology in biomedical science. Journal of Biomedical Science. 23, 8 (2016).
  14. Kay, B. K., Kasanov, J., Yamabhai, M. Screening phage-displayed combinatorial peptide libraries. Methods. 24 (3), 240-246 (2001).
  15. Rodi, D. J., Makowski, L. Phage-display technology – Finding a needle in a vast molecular haystack. Current Opinion in Biotechnology. 10, 87-93 (1999).
  16. Sidhu, S. S. Engineering M13 for phage display. Biomolecular Engineering. 18, 57-63 (2002).
  17. Hamzeh-Mivehroud, M., Mahmoudpour, A., Dastmalchi, S. Identification of new peptide ligands for epidermal growth factor receptor using phage display and computationally modeling their mode of binding. Chemical Biology & Drug Design. 79 (3), 246-259 (2012).
  18. Askoxylakis, V., et al. Peptide-based targeting of the platelet-derived growth factor receptor beta. Molecular Imaging and Biology. 15 (2), 212-221 (2013).
  19. Chen, Y., et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nature Biotechnology. 24 (4), 455-460 (2006).
  20. Azzazy, H. M., Highsmith, W. E. Phage display technology: clinical applications and recent innovations. Clinical Biochemistry. 35, 425-445 (2002).
  21. Pasqualini, R., Ruoslahti, E. Organ targeting In vivo using phage display peptide libraries. Nature. 380 (6572), 364-366 (1996).
  22. Liu, R., Li, X., Xiao, W., Lam, K. S. Tumor-targeting peptides from combinatorial libraries. Advanced Drug Delivery Reviews. 110-111, 13-37 (2017).
  23. Binetruy-Tournaire, R., et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. The EMBO Journal. 19, 1525-1533 (2000).
  24. Peng, Y., Zhang, Y., Mitchell, W. J., Zhang, G. Development of a Lipopolysaccharide-Targeted Peptide Mimic Vaccine against Q Fever. Journal of Immunology. 189, 4909-4920 (2012).
  25. Lamichhane, T. N., Abeydeera, N. D., Duc, A. C., Cunningham, P. R., Chow, C. S. Selection of Peptides Targeting Helix 31 of Bacterial 16S Ribosomal RNA by Screening M13 Phage-Display Libraries. Molecules. 16, 1211-1239 (2011).
  26. Sahin, D., Taflan, S. O., Yartas, G., Ashktorab, H., Smoot, D. T. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library. Asian Pacific. Journal of Cancer Prevention. 19 (4), 927-932 (2018).
  27. Kelly, K. A., et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLOS Medicine. 5 (4), e85 (2008).
  28. Sugihara, K., et al. Development of pro-apoptotic peptides as potential therapy for peritoneal endometriosis. Nature Communications. 5, 4478 (2014).
  29. Rafii, S., Avecilla, S. T., Jin, D. K. Tumor vasculature address book: Identification of stage-specific tumor vessel zip codes by phage display. Cancer Cell. 4, 331-333 (2003).
  30. Arap, W., Pasqualini, R., Ruoslahti, E. Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model. Science. 279, 377-390 (1997).
check_url/60189?article_type=t

Play Video

Cite This Article
Zhao, Y., Wang, Q., Hong, A., Chen, X. Screening and Identification of Small Peptides Targeting Fibroblast Growth Factor Receptor2 using a Phage Display Peptide Library. J. Vis. Exp. (151), e60189, doi:10.3791/60189 (2019).

View Video