Summary

NEMO IKK绑定域的生产、结晶和结构确定

Published: December 28, 2019
doi:

Summary

我们描述了通过X射线晶体学测定NEMOIKK结合域的结构确定方案。这些方法包括蛋白质表达、纯化和表征,以及成功优化晶体和确定无结合形式蛋白质的结构的策略。

Abstract

NEMO 是一种脚手架蛋白,通过将 IKK 复合物与激酶 IKK® 和 IKK® 组装在 NF-+B 通路中起着至关重要的作用。激活后,IKK复合磷酸化I+B分子,导致NF-βB核易位和目标基因的激活。抑制NEMO/IKK相互作用是NF-βB通路活性调节的一种有吸引力的治疗范例,使NEMO成为抑制剂设计和发现的目标。为了便于NEMO抑制剂的发现和优化过程,我们设计了NEMO的IKK结合域的改进结构,允许以apo形式和与小分子量抑制剂结合的蛋白质的结构测定。在这里,我们介绍了用于NEMOIKK绑定域的设计、表达和结构特征化的策略。蛋白质在大肠杆菌细胞中表达,在变性条件下溶解,并通过三个色谱步骤进行纯化。我们讨论了用于结构测定的晶体获取协议,并描述了数据采集和分析策略。这些方案将广泛适用于NEMO和小分子抑制剂复合物的结构测定。

Introduction

NF-βB通路被激活,以响应各种刺激,包括细胞因子,微生物产品和压力,以调节目标基因的表达负责炎症和免疫反应,细胞死亡或生存和增殖1。包括炎症和自身免疫性疾病以及癌症2、3、4、5在内的病理学都与途径的过度激活有关,这使得NF-βB活性的调节成为开发新疗法6、7的首要目标。

规范的NF-βB通路与负责淋巴组织生成和B细胞活化的非规范通路有区别,前者依赖脚手架蛋白NEMO(NF-B必需调制器8),以组装IKK复合物与激酶IKK®和IKK®。IKK复合物负责I+B+(βB抑制剂)的磷酸化,以降解为目标,释放NF-βB二聚体,将NF-βB二聚体转移到核进行基因转录1,因此是开发调节NF-B活性抑制剂的诱人靶点。

我们的研究重点是NEMO和IKK+之间的蛋白质-蛋白质相互作用的表征,针对NEMO开发IKK复杂形成小分子抑制剂。NEMO的最小结合域,需要结合IKK®,包括残留物44-111,其结构已确定在复杂的与对应于IKK®序列701-7459的肽。NEMO 和 IKK® 形成四螺旋束,其中 NEMO 二分器将 IKK® (701-745) 的两个螺旋体容纳在具有扩展交互接口的拉长开槽中。IKK®(734-742),也称为NEMO绑定域(NBD),定义了最重要的结合热点,其中两个基本色氨酸(739,741)深埋在NEMO口袋中。复杂结构的细节有助于针对NEMO的小分子抑制剂的基于结构的设计和优化。同时,很难在NEMO中重现由在晶体中观察到的长IKK®(701-745)的基基(701-745)的结合引起的整个构象变化(即NEMO盘绕-螺旋二聚体)的完全构象变化,而未结合的NEMO或NEMO与小分子抑制剂结合的结构可能代表了基于结构的药物设计和抑制剂优化的更好目标。

全长NEMO和包含IKK绑定域的较小截断构造已经证明,通过X射线晶体学和核磁共振(NMR)方法10,在未绑定形式的结构确定中,我们设计了一个改进版本的NEMO的IKK绑定域。事实上,未绑定形式的NEMO(44-111)只是部分折叠,并经历构象交换,因此,我们设置稳定其二体结构,盘绕折叠和稳定,同时保持IKK®的绑定亲和力。通过在蛋白质的N-和C-termini上附加理想二分线圈序列11的三个七分体,以及一系列四点突变,我们产生了NEMO-EEAA,一个构造完全二分体并折叠在一个盘绕线圈中,从而挽救了IKK结合亲和力到全长NEMO12的纳米摩尔范围。作为另一个优势,我们希望盘绕式适配器(基于GCN4序列)将促进结晶,并最终通过分子替换帮助X射线结构确定。卷绕式适配器也同样被利用,既提高了稳定性,改善了溶液行为,又有利于三角线圈和抗体片段13、14的结晶。NEMO-EEAA 易于表达和纯化从Escherichia. 大肠杆菌细胞与可夹层的Histidine标签,是可溶性的,折叠在一个稳定的二分卷线圈,并易于结晶,与衍射到1.9°。GCN4有序盘绕线圈区域的存在,可进一步帮助使用GCN415的已知结构进行分子替换,从而逐步利用NEMO-EEAA晶体的数据。

鉴于使用 apo-NEMO-EEAA 获得的结果,我们相信此处描述的协议也可以应用于存在小肽(如 NBD 肽)或小分子抑制剂的 NEMO-EEAA 的结晶,目的是了解 NEMO 抑制的要求以及初始铅抑制剂对高亲和力的基于结构的优化。鉴于许多盘绕域的可塑性和动态性16,使用盘绕式适配器在帮助结构确定方面可以发现更普遍的适用性。

Protocol

1. 晶体学构造设计 使用T7启动子在大肠杆菌中表达的载体中克隆NEMO-EEAA序列,包括N端六核-histidine标记和蛋白酶裂解位点。注:在此协议中,我们使用经过修改的载体,包括N端六角体-赫丁标记和烟草蚀刻病毒(TEV)裂解位10。该载体促进蛋白质结晶的He标记的裂解,在所需蛋白质序列开始之前只留下GSW残留物的短暂延伸。从中派生该的矢量和替…

Representative Results

NEMO IKK结合域的克隆、表达和纯化。本研究中遵循的协议获得NEMO-EEAA的最终序列(图1A),它产生衍射质量晶体,涉及所有中间结构的表达和表征,包括在N和或C-终点站添加线圈适配器,突变C76A,C95S和突变E56A,E57A。图1B显示了在整个纯化过程中收集的样品的SDS-PAGE凝胶,如图1C</strong…

Discussion

NEMO在未绑定形式的结晶尝试没有成功,包括使用全长蛋白质的尝试和包括IKK结合域的几种截断结构。我们对NEMO的IKK结合域(残留物44-111)的生物物理表征,通过循环双色、NMR光谱和荧光各向异性表明,该结构,尽管能够结合IKK®,但存在于一种构象交换状态,不适合结晶9,10。我们的方法涉及设计 NEMO 的 IKK 绑定域,该域采用更稳定、折叠和原生样的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢D.Madden教授在整个项目中进行了许多有益的讨论。我们感谢D.Bolon教授赠送含有优化的GCN4线圈的质粒。我们感谢郭博士的NEMO质粒。我们感谢克里斯蒂娜·阿诺迪、塔马尔·巴西亚什维利和艾米·肯尼迪演示了这个程序。我们感谢达特茅斯生物晶体学核心设施以及化学、生物化学和细胞生物学系对晶体成像设备的使用,并感谢 BioMT 人员的支持。这项研究使用了国家同步辐射光源II的AMX光束线,这是美国能源部(DOE)科学用户设施办公室,由布鲁克黑文国家实验室根据合同号为能源能源科学办公室运营。DE-SC0012704。我们感谢NSLS II的工作人员的支持。这项工作由NIH赠款R03AR066130、R01GM133844、R35GM128663和P20GM1131332以及Munck-Pfefferkorn小说和互动赠款资助。

Materials

20% w/v γ-PGA (Na+ form, LM) Molecular Dimensions MD2-100-150 For fine screen crystallization of NEMO-EEAA
3.5 kDa MWCO Dialysis Membrane Spectra/Por 132724 For dialysis removal of imidazole
Amicon Stirred Cell Millipose Sigma UFSC 05001 For protein concentration
Ammonium Chloride Millipore Sigma G8270 For minimal media labeling
Benzonase Nuclease Millipore Sigma 9025-65-4 For digestion of nucleic acid
BL21-CodonPlus (DE3)-RIL Competent Cells Agilent Technologies Model: 230245 TEV expression
CryoPro Hampton Research HR2-073 Cryo-protectants kit
D-Glucose (Dextrose) Millipore Sigma A9434 For minimal media labeling
Difco Terrific Broth ThermoFisher DF043817 For culture growth
Dithiothreitol > 99% Goldbio DTT25 For reduction of disulfides
E. coli: Rosetta 2 (DE3) Novagen 71400-3 Expression of unlabeled NEMO-EEAA
FORMULATOR Formulatrix Liquid handler/ screen builder
HCl – 1.0 M Solution Hampton Research HR2-581 For fine screen crystallization of NEMO-EEAA
HiLoad 16/600 Superdex 75 pg GE Healthcare 28989333 For size exclusion purification
HisTrap HP 5 mL column GE Healthcare 17524802 For purification of His-tagged NEMO-EEAA
HT 96 MIDAS Molecular Dimensions MD1-59 For sparse matrix screening of NEMO-EEAA
HT 96 Morpheous Molecular Dimensions MD1-46 For sparse matrix screening of NEMO-EEAA
Imidazole ThermoFisher 288-32-4 For elution from His-trap column
Isopropyl-beta-D-thiogalactoside Goldbio I2481C5 For induction of cultures
MRC2 crystallization plate Hampton Research HR3-083 Crystallization plate
NT8 – Drop Setter Formulatrix Crystallization
pET-16b Millipore Sigma 69662 For cloning of NEMO-EEAA
pET-45b Millipore Sigma 71327 For cloning of NEMO-EEAA
Phenylmethylsulfonyl fluoride ThermoFisher 36978 For inhibition of proteases
Polycarbonate Bottle for use in Ultracentrifuge Rotor Type 45 Ti Beckmann Coulter 339160 Ultracentrifuge bottle
Polyethylene Glycol 20,000 Hampton Research HR2-609 For fine screen crystallization of NEMO-EEAA
pRK793 (TEV) Addgene Plasmid 8827 For TEV production
QuikChange XL II Agilent Technologies 200522 Site directed mutagenesis
Required Cap Assembly: Beckmann Coulter 355623 Ultracenttrifuge bottle cap
ROCK IMAGER Formulatrix Crystallization Imager
Seed Bead Kit Hampton Research HR2-320 Seed generation
Sodium Chloride ≥ 99% Millipore Sigma S9888 For buffering of purification solutions
TCEP (Tris (2-Carboxyethyl) phosphine Hydrochloride) Goldbio TCEP1 Reducing agent
The Berkeley Screen Rigaku MD15-Berekely For sparse matrix screening of NEMO-EEAA
The PGA Screen Molecular Dimensions MD1-50 For fine screen crystallization of NEMO-EEAA
Tris – 1.0 M Solution Hampton Research HR2-589 For fine screen crystallization of NEMO-EEAA
Ultrapure Tris Buffer (powder format) Thermofisher 15504020 For buffering of purification solutions
Urea ThermoFisher 29700 For denaturation of NEMO-EEAA

References

  1. Gilmore, T. D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 25 (51), 6680-6684 (2006).
  2. Bassères, D. S., Baldwin, A. S. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 25 (51), 6817-6830 (2006).
  3. Hayden, M. S., West, A. P., Ghosh, S. NF-kappaB and the immune response. Oncogene. 25 (51), 6758-6780 (2006).
  4. Lee, T. I., Young, R. A. Transcriptional regulation and its misregulation in disease. Cell. 152 (6), 1237-1251 (2013).
  5. Courtois, G., Gilmore, T. D. Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene. 25 (51), 6831-6843 (2006).
  6. Zhao, J., et al. Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation. PLoS biology. 16 (6), 2004663 (2018).
  7. Zhang, Q., Lenardo, M. J., Baltimore, D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 168 (1-2), 37-57 (2017).
  8. Jin, D. Y., Jeang, K. T. Isolation of full-length cDNA and chromosomal localization of human NF-kappaB modulator NEMO to Xq28. Journal of Biomedical Science. 6 (2), 115-120 (1999).
  9. Rushe, M., et al. Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure. 16 (5), 798-808 (2008).
  10. Guo, B., Audu, C. O., Cochran, J. C., Mierke, D. F., Pellegrini, M. Protein engineering of the N-terminus of NEMO: structure stabilization and rescue of IKKβ binding. Biochemistry. 53 (43), 6776-6785 (2014).
  11. Havranek, J. J., Harbury, P. B. Automated design of specificity in molecular recognition. Nature Structural Biology. 10 (1), 45-52 (2003).
  12. Barczewski, A. H., Ragusa, M. J., Mierke, D. F., Pellegrini, M. The IKK-binding domain of NEMO is an irregular coiled coil with a dynamic binding interface. Scientific Reports. 9 (1), 2950 (2019).
  13. Arimori, T., et al. Fv-clasp: an artificially designed small antibody fragment with improved production compatibility, stability, and crystallizability. Structure. 25 (10), 1611-1622 (2017).
  14. Hernandez Alvarez, B., Hartmann, M. D., Albrecht, R., Lupas, A. N., Zeth, K., Linke, D. A new expression system for protein crystallization using trimeric coiled-coil adaptors. Protein Engineering, Design and Selection. 21 (1), 11-18 (2008).
  15. Oshaben, K. M., Salari, R., McCaslin, D. R., Chong, L. T., Horne, W. S. The native GCN4 leucine-zipper domain does not uniquely specify a dimeric oligomerization state. Biochemistry. 51 (47), 9581-9591 (2012).
  16. Truebestein, L., Leonard, T. A. Coiled-coils: The long and short of it. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 38 (9), 903-916 (2016).
  17. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254 (1976).
  18. Kapust, R. B., et al. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Engineering. 14 (12), 993-1000 (2001).
  19. Miladi, B., et al. A new tagged-TEV protease: construction, optimisation of production, purification and test activity. Protein Expression and Purification. 75 (1), 75-82 (2011).
  20. Miller, M. S., et al. Getting the Most Out of Your Crystals: Data Collection at the New High-Flux, Microfocus MX Beamlines at NSLS-II. Molecules. 24 (3), (2019).
  21. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., Read, R. J. Phaser crystallographic software. Journal of Applied Crystallography. 40, 658-674 (2007).
  22. Adams, P. D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D: Biological Crystallography. 66, 213-221 (2010).
  23. Terwilliger, T. C., et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallographica. Section D, Biological Crystallography. 64, 61-69 (2008).
  24. Emsley, P., Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallographica. Section D, Biological Crystallography. 60, 2126-2132 (2004).
  25. Terwilliger, T. C., et al. phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta. Journal of Structural and Functional Genomics. 13 (2), 81-90 (2012).
  26. Strong, M., Sawaya, M. R., Wang, S., Phillips, M., Cascio, D., Eisenberg, D. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America. 103 (21), 8060-8065 (2006).
  27. Tickle, I. J., et al. . STARANISO. , (2018).
  28. French, S., Wilson, K. On the treatment of negative intensity observations. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography. 34 (4), 517-525 (1978).
  29. Goldschmidt, L., Cooper, D. R., Derewenda, Z. S., Eisenberg, D. Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. Protein Science: A Publication of the Protein Society. 16 (8), 1569-1576 (2007).
  30. Zhou, L., et al. Disulfide-mediated stabilization of the IκB kinase binding domain of NF-κB essential modulator (NEMO). Biochemistry. 53 (50), 7929-7944 (2014).
  31. D’Arcy, A., Bergfors, T., Cowan-Jacob, S. W., Marsh, M. Microseed matrix screening for optimization in protein crystallization: what have we learned. Acta Crystallographica. Section F, Structural Biology Communications. 70, 1117-1126 (2014).
check_url/60339?article_type=t

Play Video

Cite This Article
Barczewski, A. H., Ragusa, M. J., Mierke, D. F., Pellegrini, M. Production, Crystallization, and Structure Determination of the IKK-binding Domain of NEMO. J. Vis. Exp. (154), e60339, doi:10.3791/60339 (2019).

View Video