Summary

从斑马鱼精子细胞中培养染色体传播

Published: March 03, 2020
doi:

Summary

核表面扩散是研究染色体事件的重要工具。在这里,我们演示了一种在斑马鱼精子细胞的前期I期间制备和可视化的中端染色体的方法。

Abstract

肌病是制造性生殖单倍体配子所需的关键细胞过程。模型生物体在理解在中位前相期间发生的染色体事件,包括配对、突触和重组事件,以确保正确的染色体分离。虽然小鼠是理解这些过程背后的分子机制的重要模型,但并不是这个系统中的所有中态事件都类似于人类的美氏症。我们最近展示了斑马鱼作为人类精子生成模型的令人振奋的潜力。在这里,我们详细描述了我们的方法,可视化染色体和相关蛋白质在染色体传播制剂。这些制剂的优点是允许对染色体结构进行高分辨率分析。首先,我们描述了从成年斑马鱼中解剖睾丸的过程,然后是细胞分离、解压和染色体扩散。接下来,我们描述了通过免疫荧光检测和核酸序列,通过荧光原位杂交(FISH)检测中值染色体蛋白定位的过程。这些技术为斑马鱼系统中的中色质结构的细胞学分析提供了一套有用的工具。斑马鱼群落的研究人员应该能够迅速掌握这些技术,并将其纳入其生殖功能的标准分析中。

Introduction

性生殖通过两个单倍体配子的组合进行,每个配子携带一半体细胞的染色体补充。美西斯是一种专门的细胞分裂,通过一轮DNA复制和连续两轮染色体分离产生单倍体配子。在前期I中,同源染色体(同源性)必须经过配对、重组和突触,后者的特点是形成由横丝桥接的两个同源轴组成的突触复合体(图1A,B)。未能正确执行这些过程可能导致非倍体配子的产生,这是导致人类流产的主要原因1。我们对配对、重组和突触之间协调的知识,已经通过研究广泛的生物,如酵母,C.elegans,小鼠和果蝇,等等促进了我们的认识。虽然同源染色体配对和分离的一般过程得到了很好的保存,但其对重组和突触的依赖程度以及这些事件的顺序各不相同。

在leptotene和突触发生后不久,在麻风素和突触发生后不久,在花束中聚集的端粒附近发生,启动同源重组的美因双链断裂(DSB)形成。DSB形成和突触启动的这种配置也是人类雄性梅氏菌病的特征,但不是在小鼠5,6,7,8,表明斑马鱼可以作为人类精子的模型。研究斑马鱼美虫病也有若干实际优点。男性和女性在整个成年期间都经历游戏生成,他们的性腺很容易获得,并且数百个后代是由一个单一的十字架产生的。此外,胚胎是透明的,并在外部发育,这有利于早期发现胚胎发育中的畸变,由于非倍体配子3,9。使用斑马鱼的缺点是,它们缓慢地达到性成熟(约60天),核表面传播所需的材料量必须从10-20只成年动物身上收集,这取决于它们的大小。

由于可以探测染色体动力学的关键特征,因此染色体传播制剂是研究所有模型生物体染色体动力学的重要工具。在斑马鱼中,通过探测核表面扩散(这里称为染色体传播)对中显方案和核组织进展的关键方面进行了剖析,通过FISH3、4、9、10、11、12检测蛋白质和/或核酸的抗体。事实上,在花束中聚集端粒的极化定位可以在传播准备中保留(图1C)。最近,我们使用斑马鱼精子细胞染色体扩散与荧光检测方法和超分辨率显微镜一起,阐明斑马鱼端粒动力学、同源染色体配对、双链断裂定位和关键美感过渡3的突触的详细进展。在这里,我们介绍从斑马鱼睾丸的精子细胞制备染色体扩散的方法,然后用荧光肽核酸(PNA)探针将其染色,以重复端粒序列和染色体相关蛋白质的免疫荧光检测。

Protocol

所有涉及斑马鱼的方法都是使用加州大学戴维斯分校机构动物护理和使用委员会批准的伦理标准进行的。 1. 染色体传播程序 注: 以下协议旨在创建 4-6 张幻灯片,每张幻灯片有数百张扩散的中导核。使用的睾丸数量取决于鱼的大小。预计在受精后60天使用20只动物,在受精后6个月使用15只动物(mpf)。对于大型斑马鱼(例如,12 mpf)10只动物应该足够。请?…

Representative Results

我们已经概述了一种制备和可视化斑马鱼精子细胞传播制剂的方法。正确执行时,我们的程序产生良好的传播,非重叠的核。为了恢复这种核,重要的是要有适量的起始材料(即睾度),治疗睾度在胰蛋白酶和足够数量的DNase I治疗足够长的时间。然后,这些传播可以染色端粒和中度蛋白,以研究期I期间的间质进展。图1描述了在期前一阶段的不同阶?…

Discussion

在这里,我们描述了从斑马鱼睾丸分离的精子细胞中探测核表面端粒和染色体相关蛋白质的位置的方法。我们期望这些方法将适用于分析其他远程物种的精子细胞,并调整睾号的大小。

虽然只有几种抗体被提升到斑马鱼的中度蛋白,但我们已经成功地使用以下抗体,这些抗体被提升到人类(h)或小鼠(m)蛋白质。我们的实验室在鸡体内提出了对斑马鱼Sycp1蛋白(zfSycp1)的抗…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢特伦特·纽曼和马苏达·沙里对手稿和An Nguyen的评论,感谢他们帮助优化了从斑马鱼染色体中传播和染色的方法。这项工作得到了NIH R01 GM079115授予S.M.B.的支持。

Materials

1.5 mL centrifuge tubes Several commercial brands available
1.5 mL microcentrifuge tube rack Several commercial brands available
16% formaldehyde, methanol-free ThermoFisher Scientific 28908
2 mL Several commercial brands available
24 x 50 mm glass coverslips Corning 2980-245
24 x 60 mm glasscoverslips VWR International 16004-312
50 mL conical centrifuge tubes ThermoFisher Scientific 363696
Autoclave bag Several commercial brands available Used to make plastic coverslips.
Bovine Serum Albumin (BSA) Fisher Scientific BP1605-100 Prepare a 100 mg/ml stock solution in sterile distilled water.
Cell Strainer, 100 µm Fisher Scientific 08-771-19
CF405M goat anti-chicken IgY (H+L), highly cross-adsorbed Biotium 203775-500uL Use at 1:1000
Chicken anti-zfSycp1 Generated by Burgess lab N/A Use at 1:100
Collagenase from Clostridium histolyticum Sigma-Aldrich C0130-500MG
Coplin jar Several commercial brands available
DNase I, grade II from bovine pancreas Roche Diagnostics 10104159001
Dulbecco's Modified Eagle Medium (DMEM) Fisher Scientific MT10014CV
Dumont No. 5 Forceps Fine Science Tools 11252-30 Two are required for dissecting the testes.
Eppendorf Tubes, 5 mL VWR International 89429-308
Formamide Fisher Scientific BP228-100
Goat anti-chicken IgY (H+L) secondary antibody, Alexa Fluor 488 ThermoFisher Scientific A-11039 Use at 1:1000
Goat anti-chicken IgY (H+L) secondary antibody, Alexa Fluor 594 ThermoFisher Scientific A-11042 Use at 1:1000
Goat anti-hDMC1 Santa Cruz Biotechnology sc-8973 Does not work in our hands
Goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 488 ThermoFisher Scientific A-11008 Use at 1:1000
Goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 594 ThermoFisher Scientific A-11012 Use at 1:1000
Goat serum Sigma-Aldrich G9023-10mL
Heparin sodium salt Sigma-Aldrich H3393-100KU
Humidity chamber Fisher Scientific 50-112-3683
Hybridization Oven VWR International 230401V (Model 5420)
Incubator Shaker New Brunswick Scientific Model Classic C25
KCl Fisher Scientific P217-500
Kimwipes Kimerbly-Clark Professional 34155 Used for the humidity chamber
KH2PO4 Fisher Scientific P285-500
Microscope Several commercial brands available Any standard microscope capable of at least ~1.65X magnification is sufficient.
Microscope slides Fisher Scientific 12-544-7
Mouse anti-hamsterSCP3 Abcam ab97672 Does not work in our hands
Mouse anti-hMLH1 BD Biosciences 550838 Does not work in our hands
Mouse anti-hRPA Sigma-Alrich MABE285 Does not work in our hands
Na2HPO4 · 7 H2O Fisher Scientific S373-500
NaCl Fisher Scientific S271-3
Photo-Flo 200 solution Electron Microscopy Sciences 74257
Plastic transfer pipettes Several commercial brands available
PNA TelC-Alexa647 PNA Bio Inc F1013 Prepare as per manufacturer's instructions.
PNA TelC-Cy3 PNA Bio Inc F1002 Prepare as per manufacturer's instructions.
ProLong Diamond Antifade Mountant ThermoFisher Scientific P36970
ProLong Diamond Antifade Mountant with DAPI ThermoFisher Scientific P36971
Rabbit anti-hRPA Bethyl A300-244A Use at 1:300
Rabbit anti-hSCP3 Abcam ab150292 Use at 1:200
Rabbit anti-hRad51 GeneTex GTX100469 Use at 1:300
Sodium citrate Fisher Scientific S279-500
Sucrose Fisher Scientific S5-500
Supercut Scissors, 30° angle, 10 cm Fisher Scientific 50-822-353 Can also use any pair of small scissors.
Sylgard kit Fisher Scientific NC9897184 Prepare as per manufacturer's instructions.
Triton X-100 Fisher Scientific BP151-100 Dilute in sterile distilled water to make a 20% working solution. Store at room temperature. Triton X-100 forms a precipitate when diluted in water; precipitate dissolves overnight.
Trypsin Worthington Biochemical LS003708
Trypsin inhibitor from chicken egg white Sigma-Aldrich T9253-500MG
Tween 20 Bio-Rad 170-6531 Dilute in sterile distilled water to make a 20% working solution. Store at room temperature.
Vannas Spring Scissors – 4 mm (micro scissors) Fine Science Tools 15018-10

References

  1. Nagaoka, S. I., Hassold, T. J., Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nature Reviews Genetics. 13, 493-504 (2012).
  2. Zickler, D., Kleckner, N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harbor Perspectives in Biology. 7, (2015).
  3. Blokhina, Y. P., Nguyen, A. D., Draper, B. W., Burgess, S. M. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLoS Genetics. 15, e1007730 (2019).
  4. Saito, K., Sakai, C., Kawasaki, T., Sakai, N. Telomere distribution pattern and synapsis initiation during spermatogenesis in zebrafish. Developmental Dynamics. 243, 1448-1456 (2014).
  5. Oliver-Bonet, M., Turek, P. J., Sun, F., Ko, E., Martin, R. H. Temporal progression of recombination in human males. Molecular Human Reproduction. 11, 517-522 (2005).
  6. Gruhn, J. R., Rubio, C., Broman, K. W., Hunt, P. A., Hassold, T. Cytological studies of human meiosis: sex-specific differences in recombination originate at, or prior to, establishment of double-strand breaks. PLoS One. 8, e85075 (2013).
  7. Pratto, F., et al. Recombination initiation maps of individual human genomes. Science. 346, 1256442 (2014).
  8. Brown, P. W., et al. Meiotic synapsis proceeds from a limited number of subtelomeric sites in the human male. American Journal of Human Genetics. 77, 556-566 (2005).
  9. Poss, K. D., Nechiporuk, A., Stringer, K. F., Lee, C., Keating, M. T. Germ cell aneuploidy in zebrafish with mutations in the mitotic checkpoint gene mps1. Genes and Development. 18, 1527-1532 (2004).
  10. Saito, K., Siegfried, K. R., Nüsslein-Volhard, C., Sakai, N. Isolation and cytogenetic characterization of zebrafish meiotic prophase I mutants. Developmental Dynamics. 240, 1779-1792 (2011).
  11. Sansam, C. L., Pezza, R. J. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination. Febs Journal. 282, 2444-2457 (2015).
  12. Feitsma, H., Leal, M. C., Moens, P. B., Cuppen, E., Schulz, R. W. Mlh1 Deficiency in Zebrafish Results in Male Sterility and Aneuploid as Well as Triploid Progeny in Females. Genetics. 175, 1561-1569 (2007).
  13. Dia, F., Strange, T., Liang, J., Hamilton, J., Berkowitz, K. M. Preparation of Meiotic Chromosome Spreads from Mouse Spermatocytes. Journal of Visualized Experiments. (129), e55378 (2017).
  14. Moens, P. B. Zebrafish: chiasmata and interference. Genome. 49, 205-208 (2006).
  15. Lisachov, A. P., Zadesenets, K. S., Rubtsov, N. B., Borodin, P. M. Sex chromosome synapsis and recombination in male guppies. Zebrafish. 12 (2), 174-180 (2015).
  16. Ocalewicz, K., Mota-Velasco, J. C., Campos-Ramos, R., Penman, D. J. FISH and DAPI staining of the synaptonemal complex of the Nile tilapia (Oreochromis niloticus) allow orientation of the unpaired region of bivalent 1 observed during early pachytene. Chromosome Research. 17 (6), 773 (2009).
check_url/60671?article_type=t

Play Video

Cite This Article
Blokhina, Y. P., Olaya, I., Burgess, S. M. Preparation of Meiotic Chromosome Spreads from Zebrafish Spermatocytes. J. Vis. Exp. (157), e60671, doi:10.3791/60671 (2020).

View Video