Summary

高通量图像引导立体定向神经导航和聚焦超声系统,用于在啮齿动物中打开血脑屏障

Published: July 16, 2020
doi:

Summary

血脑屏障 (BBB) 可以通过微泡介导的聚焦超声波 (FUS) 暂时中断。在这里,我们描述了一个逐步协议的高通量BBB打开体内使用模块化FUS系统,为非超声专家访问。

Abstract

血脑屏障 (BBB) 是治疗各种脑部疾病的主要障碍。内皮细胞,通过紧密的结点连接,形成生理屏障,阻止大分子(>500 Da)进入脑组织。微泡介导聚焦超声波 (FUS) 可用于诱导局部 BBB 开口,使较大的药物进入大脑帕奇马。

除了用于临床翻译的大型临床设备外,药物候选者治疗反应评估的临床前研究还需要专门的小型动物超声波设置,以便有针对性地打开 BBB。最好是,这些系统允许高吞吐量的工作流,既具有高空间精度,也可进行集成气穴监测,同时在初始投资和运行成本方面仍然具有成本效益。

在这里,我们展示了一个生物发光和X射线引导立体定向小型动物FUS系统,该系统基于市售组件,满足上述要求。特别强调高度自动化,以促进在大量药物前药物评估研究中通常遇到的挑战。这些挑战的例子是需要标准化,以确保数据可重复性,减少组内变异性,减少样本量,从而符合道德要求,减少不必要的工作量。拟议的BBB系统已在BBB开放范围内得到验证,方便了对患者衍生的胶质母细胞瘤多形式和弥漫中线胶质瘤模型的药物输送试验。

Introduction

血脑屏障 (BBB) 是药物输送到大脑帕伦奇马的主要障碍。大多数已经开发的治疗药物不会越过BBB,因为他们的物理化学参数(如嗜脂,分子量,氢键接受者和捐赠者),或不保留,因为他们的亲和力在大脑1,2的外流运输器。能穿过BBB的一小群药物通常是小脂质分子,它们只对数量有限的脑部疾病1、2有效。因此,对于大多数脑部疾病,药理治疗的选择是有限的,需要新的药物输送策略3,4。

治疗超声波是一种新兴技术,可用于不同的神经学应用,如BBB中断(BBBD),神经调节,和消融4,5,6,7。为了通过颅骨实现BBB开口,通过颅骨发射器,聚焦超声波(FUS)与微泡结合。微泡介导的FUS导致大脑中药物的生物利用率增加,第5、8、9。在声波的存在下,微泡开始振荡,引发转细胞化,并破坏BBB内皮细胞之间的紧密交汇点,使较大的分子10的准细胞传输。先前的研究证实了声学发射的强度与生物对BBB开口11、12、13、14的生物影响之间的相关性。FUS与微泡结合已用于临床试验,用于治疗胶质母细胞瘤,使用特莫佐洛米德或脂质多索鲁比辛作为化疗剂,或用于治疗阿尔茨海默氏症和肌萎缩性侧索硬化症5,9,15,16。

由于超声波介质 BBB 的开启为药物治疗提供了全新的可能性,因此需要临床翻译的临床前研究来评估选定药物候选者的治疗反应。这通常需要具有高空间精度的高吞吐量工作流,最好是用于监控具有高可重复性的定向 BBB 开口的集成腔检测。如果可能,这些系统在初始投资和运行成本方面都需要具有成本效益,以便根据研究规模进行扩展。大多数前CFUS系统都与MRI相结合,用于图像指导和治疗规划15、17、18、19。虽然MRI提供了有关肿瘤解剖学和体积的详细信息,但它是一种昂贵的技术,通常由训练有素/熟练的操作员执行。此外,高分辨率MRI可能并不总是可供药物前设施的研究人员使用,并且需要每个动物长时间的扫描时间,因此它不太适合高通量的药理学研究。值得注意的是,对于神经肿瘤学领域的前科研究,特别是渗透肿瘤模型,可视化和瞄准肿瘤的可能性对于治疗成功至关重要。目前,这一要求仅通过 MRI 或用光蛋白转化的肿瘤来实现,从而实现生物发光成像 (BLI) 与光蛋白基板管理相结合的可视化。

MRI制导的FUS系统通常使用水浴来确保超声波传播用于颅面应用,即动物的头部部分淹没在水中,即所谓的”自下而上”系统15、17、18。虽然这些设计在较小的动物研究中通常效果良好,但在动物准备时间、便携性和实际可维护的卫生标准之间是一种妥协。作为核磁共振成像的替代方案,立体定向导航的其他制导方法包括使用啮齿动物解剖图集21、22、23、激光笔辅助目视24、针孔辅助机械扫描装置25或BLI26。这些设计大多是”自上而下”的系统,其中传感器被放置在动物的头顶上,动物处于自然位置。”自上而下”的工作流程包括22、25、26或充满水的圆锥体21、24。在封闭的圆锥体内使用传感器的好处是更紧凑的占地面积、更短的设置时间和直接的净化可能性简化了整个工作流程。

声场与微泡的相互作用是压力依赖的,范围从低振幅振荡(称为稳定气泡)到瞬态气泡崩塌(称为惯性气泡)27,28。有一个既定的共识,超声波BBBD需要一个声压远远高于稳定的气穴阈值,以实现成功的BBBD,但低于惯性气泡阈值,这通常与血管/神经损伤29。最常见的监测和控制形式是分析(背)散发出声信号使用被动腔检测(PCD),如麦克丹诺德等人建议的12。PCD 依赖于微泡发射信号的 Fourier 光谱分析,其中稳定气泡特征(谐波、亚和声波和超谐波)和惯性气泡标记(宽带响应)的强度和外观可以实时测量。

由于微泡配方的多散射性(振荡幅度强烈取决于气泡直径)、品牌间气泡壳特性的差异以及声学振荡(这在很大程度上取决于频率和压力30、31、32),用于精确压力控制的”一刀切”PCD 分析变得复杂。因此,提出了许多不同的PCD检测方案,这些协议已适应所有这些参数的特定组合,并已用于各种应用方案(从体外实验小动物协议到PCD用于临床使用),用于强力气穴检测,甚至用于压力11、14、30、31、32、33、34、35的追溯性反馈控制。本研究范围内采用的PCD协议直接来自麦克丹诺德等人12,并监测谐波发射是否存在稳定的空腔和宽带噪声,用于惯性气穴检测。

我们已经开发了一个图像引导神经导航FUS系统,用于BBB的短暂打开,以增加药物输送到大脑的帕奇马。该系统基于市售组件,可根据动物设施中可用的成像技术轻松适应多种不同的成像方式。由于我们需要高通量工作流程,我们选择使用 X 射线和 BLI 进行图像指导和治疗规划。用光蛋白(如红素酶)转化的肿瘤细胞适合BLI成像20。光蛋白基底施用后,肿瘤细胞可在体内监测,肿瘤生长和位置可确定20、36。BLI是一种低成本的成像方式,它能够随时间跟随肿瘤生长,具有快速的扫描时间,它与MRI36,37测量的肿瘤生长密切相关。我们选择用一个装满水的锥体代替水浴池,以灵活地移动安装啮齿动物的平台。设计基于一个可拆卸平台,配备集成了(I)小动物立体定向平台(II)与X射线和光学图像兼容性(III)快速可拆卸麻醉面膜和(IV)集成温度调节动物加热系统。麻醉后,动物被安装在平台上的精确位置,在整个过程中,它仍然存在。因此,整个平台通过整个干预工作流程的所有站点,同时保持准确和可重复的定位和持续麻醉。控制软件允许自动检测假象标记,并自动将所有类型的图像和图像模式(即微CT、X 射线、BLI 和荧光成像)注册到立体定向平台的参考框架中。在自动校准程序的帮助下,超声波传感器的焦距在内部被精确认识,从而实现了介入规划、声学传输和后续成像分析的自动融合。如图1图2所示,该设置提供了高度的灵活性,设计专用的实验工作流程,并允许在不同的站点交错处理动物,从而促进高通量实验。我们已使用这项技术成功地在小鼠异种移植的高档胶质瘤,如弥漫中线胶质瘤。

Protocol

所有体内实验均由荷兰伦理委员会(许可证编号AVD114002017841)和荷兰阿姆斯特丹Vrije大学动物福利机构批准。调查人员接受了FUS系统基础知识的培训,以尽量减少动物的不适。 1. 聚焦超声波系统 注:描述的设置是基于市售组件的内部构建的 BBB 中断系统,包括一个 3D 打印定制圆锥体和可拆卸立体声平台。该系统设计为模块化,可根据现有设备和特定用途进…

Representative Results

描述的FUS系统(图1和图2)和相关工作流程已用于100多只动物,并产生了健康小鼠和肿瘤携带小鼠的可重复数据。根据微泡泡泡注注峰值时记录的空腔和谐波的光谱密度,可以使用《议定书》第 4 步中解释的 Fourier 分析计算每个频率的光谱功率。基于声学协议(1 MHz,10ms脉冲持续时间),MI为0.4,结合微泡,在第二和第三谐波的标准化?…

Discussion

在这项研究中,我们开发了一个基于成本效益的基于FUS的图像引导系统,用于瞬时BBB中断,以增加药物输送到大脑的帕奇马。该系统主要由市售组件构建,并与 X 射线和 BLI 配合使用。拟议设计的模块化允许在高通量工作流程中使用多种成像模式进行规划和评估。该系统可以与更全面的高分辨率 3D 成像模式(例如高分辨率 MRI 或微型 CT)相结合,而对于大部分研究,2D 成像模式(如 2D X 射线和/或 …

Disclosures

The authors have nothing to disclose.

Acknowledgements

该项目由KWF-STW资助(儿童扩散内在庞廷胶质瘤和高档胶质瘤的索诺波治疗药物交付)。我们感谢伊利亚·斯卡奇科夫和查尔斯·穆格诺特对该系统开发的投入。

Materials

1 mL luer-lock syringe Becton Dickinson 309628 Plastipak
19 G needle Terumo Agani 8AN1938R1
23 G needle Terumo Agani 8AN2316R1
3M Transpore surgical tape Science applied to life 7000032707 or similar
Arbitrary waveform generator Siglent n.a. SDG1025, 25 MHz, 125 Msa/s
Automated stereotact in-house built n.a. Stereotact with all elements were in-house built
Bruker In-Vivo Xtreme Bruker n.a. Includes software
Buffered NaCl solution B. Braun Melsungen AG 220/12257974/110
Buprenorfine hydrochloride Indivior UK limitd n.a. 0.324 mg
Cage enrichment: paper-pulp smart home Bio services n.a.
Carbon filter Bickford NC0111395 Omnicon f/air
Ceramic spoon n.a n.a.
Cotton swabs n.a. n.a.
D-luciferin, potassium salt Gold Biotechnology LUCK-1
Ethanol VUmc pharmacy n.a. 70%
Evans Blue Sigma Aldrich E2129
Fresenius NaCl 0.9% Fresenius Kabi n.a. NaCl 0.9 %, 1000 mL
Histoacryl Braun Surgical n.a. Histoacryl 0.5 mL
Hydrophone Precision Acoustics n.a.
Insulin syringe Becton Dickinson 324825/324826 0.5 mL and 0.3 mL
Isoflurane TEVA Pharmachemie BV 8711218013196 250 mL
Ketamine Alfasan n.a. 10 %, 10 mL
Mouse food: Teklad global 18% protein rodent diet Envigo 2918-11416M
Neoflon catheter Becton Dickinson 391349 26 GA 0.6 x 19 mm
Oscilloscope Keysight technologies n.a. InfiniiVision DSOX024A
Plastic tubes Greiner bio-one 210261 50 mL
Power amplifier Electronics & Innovation Ltd 210L Model 210L
Preamplifier DC Coupler Precision Acoustics n.. Serial number: DCPS94
Scissors Sigma Aldrich S3146-1EA or similar
Sedazine AST Farma n.a. 2%
SonoVue microbubbles Bracco n.a. 8 µl/ml
Sterile water Fresenius Kabi n.a. 1000 mL
Syringe n.a. n.a. various syringes can be used
Temgesic Indivior UK limitd n.a. 0.3 mg/ml
Transducer Precision Acoustics n.a. 1 MHz
Tweezers Sigma Aldrich F4142-1EA or similar
Ultrasound gel Parker Laboratories Inc. 01-02 Aquasonic 100
Vidisic gel Bausch + Lomb n.a. 10 g

References

  1. Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies. 1 (4), 337-341 (2004).
  2. Pardridge, W. M. Blood-brain barrier delivery. Drug Discovery Today. 12 (1-2), 54-61 (2007).
  3. Alli, S., et al. Brainstem blood brain barrier disruption using focused ultrasound: A demonstration of feasibility and enhanced doxorubicin delivery. Journal of Controlled Release. 281, 29-41 (2018).
  4. Burgess, A., Hynynen, K. Noninvasive and targeted drug delivery to the brain using focused ultrasound. ACS Chemical Neuroscience. 4 (4), 519-526 (2013).
  5. Meng, Y., et al. Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. Journal of Controlled Release. 309, 25-36 (2019).
  6. Darrow, D. P. Focused Ultrasound for Neuromodulation. Neurotherapeutics. 16 (1), 88-99 (2019).
  7. Zhou, Y. F. High intensity focused ultrasound in clinical tumor ablation. World Journal of Clinical Oncology. 2 (1), 8-27 (2011).
  8. O’Reilly, M. A., Hough, O., Hynynen, K. Blood-Brain Barrier Closure Time After Controlled Ultrasound-Induced Opening Is Independent of Opening Volume. Journal of Ultrasound in Medicine. 36 (3), 475-483 (2017).
  9. Mainprize, T., et al. Blood-Brain Barrier Opening in Primary Brain Tumors with Non-invasive MR-Guided Focused Ultrasound: A Clinical Safety and Feasibility Study. Scientific Reports. 9 (1), 321 (2019).
  10. Dasgupta, A., et al. Ultrasound-mediated drug delivery to the brain: principles, progress and prospects. Drug Discovery Today: Technologies. 20, 41-48 (2016).
  11. O’Reilly, M. A., Waspe, A. C., Chopra, R., Hynynen, K. MRI-guided disruption of the blood-brain barrier using transcranial focused ultrasound in a rat model. Journal of Visualized Experiments. (61), (2012).
  12. McDannold, N., Vykhodtseva, N., Hynynen, K. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Physics in Medicine & Biology. 51 (4), 793 (2006).
  13. McDannold, N., Vykhodtseva, N., Hynynen, K. Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound in Medicine and Biology. 34 (5), 834-840 (2008).
  14. Sun, T., et al. Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model. Proceedings of the National Academy of Sciences. 114 (48), 10281-10290 (2017).
  15. Lipsman, N., et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nature Communications. 9 (1), 2336 (2018).
  16. Carpentier, A., et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Science Translational Medicine. 8 (343), 342 (2016).
  17. Chopra, R., Curiel, L., Staruch, R., Morrison, L., Hynynen, K. An MRI-compatible system for focused ultrasound experiments in small animal models. Medical Physics. 36 (5), 1867-1874 (2009).
  18. Kinoshita, M., McDannold, N., Jolesz, F. A., Hynynen, K. Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochemical and Biophysical Research Communications. 340 (4), 1085-1090 (2006).
  19. Larrat, B., et al. MR-guided transcranial brain HIFU in small animal models. Physics in Medicine & Biology. 55 (2), 365 (2009).
  20. Contag, C. H., Jenkins, D., Contag, P. R., Negrin, R. S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia. 2 (1-2), 41 (2000).
  21. Choi, J. J., Pernot, M., Small, S. A., Konofagou, E. E. Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound in Medicine & Biology. 33 (1), 95-104 (2007).
  22. Bing, C., et al. Trans-cranial opening of the blood-brain barrier in targeted regions using astereotaxic brain atlas and focused ultrasound energy. Journal of Therapeutic Ultrasound. 2 (1), 13 (2014).
  23. Marquet, F., et al. Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates. PloS One. 9 (2), (2014).
  24. Anastasiadis, P., et al. characterization and evaluation of a laser-guided focused ultrasound system for preclinical investigations. Biomedical Engineering Online. 18 (1), 36 (2019).
  25. Liu, H. L., Pan, C. H., Ting, C. Y., Hsiao, M. J. Opening of the blood-brain barrier by low-frequency (28-kHz) ultrasound: a novel pinhole-assisted mechanical scanning device. Ultrasound in Medicine & Biology. 36 (2), 325-335 (2010).
  26. Zhu, L., et al. Focused ultrasound-enabled brain tumor liquid biopsy. Scientific Reports. 8 (1), 1-9 (2018).
  27. Bader, K. B., Holland, C. K. Gauging the likelihood of stable cavitation from ultrasound contrast agents. Physics in Medicine & Biology. 58 (1), 127 (2012).
  28. Neppiras, E. Acoustic cavitation series: part one: Acoustic cavitation: an introduction. Ultrasonics. 22 (1), 25-28 (1984).
  29. Aryal, M., Arvanitis, C. D., Alexander, P. M., McDannold, N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Advanced Drug Delivery Reviews. 72, 94-109 (2014).
  30. Tung, Y. S., Choi, J. J., Baseri, B., Konofagou, E. E. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles. Ultrasound in Medicine & Biology. 36 (5), 840-852 (2010).
  31. Arvanitis, C. D., Livingstone, M. S., Vykhodtseva, N., McDannold, N. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PloS One. 7 (9), (2012).
  32. Tsai, C. H., Zhang, J. W., Liao, Y. Y., Liu, H. L. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers. Physics in Medicine & Biology. 61 (7), 2926 (2016).
  33. Chen, W. S., Brayman, A. A., Matula, T. J., Crum, L. A. Inertial cavitation dose and hemolysis produced in vitro with or without Optison. Ultrasound in Medicine & Biology. 29 (5), 725-737 (2003).
  34. Qiu, Y., et al. The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro. Journal of Controlled Release. 145 (1), 40-48 (2010).
  35. Sun, T., Jia, N., Zhang, D., Xu, D. Ambient pressure dependence of the ultra-harmonic response from contrast microbubbles. The Journal of the Acoustical Society of America. 131 (6), 4358-4364 (2012).
  36. Rehemtulla, A., et al. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia. 2 (6), 491-495 (2000).
  37. Puaux, A. L., et al. A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals. International Journal of Molecular Imaging. 2011, (2011).
  38. Wu, S. K., et al. Characterization of different microbubbles in assisting focused ultrasound-induced blood-brain barrier opening. Scientific Reports. 7, 46689 (2017).
  39. van den Broek, M. P., Groenendaal, F., Egberts, A. C., Rademaker, C. M. Effects of hypothermia on pharmacokinetics and pharmacodynamics. Clinical Pharmacokinetics. 49 (5), 277-294 (2010).
  40. Paxinos, G., Franklin, K. B. . Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. , (2019).
  41. Saunders, N. R., Dziegielewska, K. M., Møllgård, K., Habgood, M. D. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives. Frontiers in Neuroscience. 385, 385 (2015).
  42. Yao, L., Xue, X., Yu, P., Ni, Y., Chen, F. Evans blue dye: a revisit of its applications in biomedicine. Contrast Media & Molecular Imaging. 2018, (2018).
  43. Caretti, V., et al. Monitoring of tumor growth and post-irradiation recurrence in a diffuse intrinsic pontine glioma mouse model. Brain Pathology. 21 (4), 441-451 (2011).
  44. Yoshimura, J., Onda, K., Tanaka, R., Takahashi, H. Clinicopathological study of diffuse type brainstem gliomas: analysis of 40 autopsy cases. Neurologia Medico-Chirurgica. 43 (8), 375-382 (2003).
  45. Yang, F. Y., et al. Micro-SPECT/CT-based pharmacokinetic analysis of 99mTc-diethylenetriaminepentaacetic acid in rats with blood-brain barrier disruption induced by focused ultrasound. Journal of Nuclear Medicine. 52 (3), 478-484 (2011).
  46. Sirsi, S., Borden, M. Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology. 1 (1-2), 3-17 (2009).
  47. Greis, C. Technology overview: SonoVue. European Radiology. 14, 11-15 (2004).
  48. Schneider, M. Characteristics of sonovue. Echocardiography. 16, 743-746 (1999).
  49. Talu, E., Powell, R. L., Longo, M. L., Dayton, P. A. Needle size and injection rate impact microbubble contrast agent population. Ultrasound in Medicine & Biology. 34 (7), 1182-1185 (2008).
  50. Pinton, G., et al. Attenuation, scattering, and absorption of ultrasound in the skull bone. Medical Physics. 39 (1), 299-307 (2012).
  51. Constantinides, C., Mean, R., Janssen, B. J. Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse. ILAR journal/National Research Council, Institute of Laboratory Animal Resources. 52, 21 (2011).
  52. McDannold, N., Zhang, Y., Vykhodtseva, N. The effects of oxygen on ultrasound-induced blood-brain barrier disruption in mice. Ultrasound in Medicine & Biology. 43 (2), 469-475 (2017).
  53. McDannold, N., Zhang, Y., Vykhodtseva, N. Blood-brain barrier disruption and vascular damage induced by ultrasound bursts combined with microbubbles can be influenced by choice of anesthesia protocol. Ultrasound in Medicine and Biology. 37 (8), 1259-1270 (2011).
check_url/61269?article_type=t

Play Video

Cite This Article
Haumann, R., ’t Hart, E., Derieppe, M. P. P., Besse, H. C., Kaspers, G. J. L., Hoving, E., van Vuurden, D. G., Hulleman, E., Ries, M. A High-Throughput Image-Guided Stereotactic Neuronavigation and Focused Ultrasound System for Blood-Brain Barrier Opening in Rodents. J. Vis. Exp. (161), e61269, doi:10.3791/61269 (2020).

View Video