Summary

在血清型 1 型肺炎链球菌 菌株 519/43 中构建突变体

Published: September 11, 2020
doi:

Summary

在这里,我们描述了一种 肺炎链球菌 血清型1菌株519/43,该菌株可以通过利用其自然获取DNA和自杀质粒的能力进行基因改造。作为原理证明,在肺溶血素(ply)基因中制造了同基因突变体。

Abstract

肺炎链球菌血清1型仍然是低收入和中等收入国家的一个大问题,特别是在撒哈拉以南非洲。尽管它很重要,但由于缺乏遗传工具来修饰它,这种血清型的研究受到了阻碍。在这项研究中,我们描述了一种对血清型1临床分离株(菌株519/43)进行基因修饰的方法。有趣的是,这是通过利用肺炎球菌自然获取DNA的能力来实现的。然而,与大多数肺炎球菌不同,线性DNA的使用并不成功;为了突变这种重要的菌株,必须使用自杀质粒。这种方法为更深入地了解这种难以捉摸的血清型提供了手段,无论是在生物学上还是在致病性方面。为了验证该方法,已知的主要肺炎球菌毒素肺溶血素发生了突变,因为它具有众所周知且易于遵循的表型。我们表明,正如预期的那样,突变体失去了裂解红细胞的能力。通过能够突变感兴趣的血清型中的重要基因,我们能够观察到腹膜内和鼻内感染时功能丧失突变体的不同表型与其他血清型观察到的表型不同。综上所述,本研究证明菌株519/43(血清型1)可以进行基因改造。

Introduction

肺炎球菌(肺炎链球菌,肺炎球菌)是全球发病和死亡的主要原因之一。直到最近,已经发现了近100种肺炎链球菌血清型1,234567。侵袭性肺炎球菌病(IPD)每年造成约70万人死亡,其中5岁以下儿童8。肺炎链球菌是全球细菌肺炎、中耳炎、脑膜炎和败血症的主要原因9。

在非洲脑膜炎地带,血清型1是脑膜炎暴发的原因,其中序列型(ST)ST217是一种毒性极强的序列类型,占主导地位1011,12,131415它在脑膜炎病理学中的重要性被比作非洲脑膜炎带脑膜炎奈瑟菌的重要性16。血清 1 型通常是 IPD 的主要原因;然而,它在运输中很少发现。事实上,在冈比亚,这种血清型占所有侵袭性疾病的20%,但仅在0.5%的健康携带者中发现1417,1819感受态肺炎球菌的遗传交换和重组通常发生在携带中,而不是在侵袭性疾病中发生20。此外,血清型 1 已被证明是肺炎球菌中描述的最短携带率之一(仅 9 天)。因此,有人提出这种血清型的重组率可能比其他血清型低得多21

有必要进行深入研究,以了解血清型1菌株携带率低的原因及其在撒哈拉以南非洲侵袭性疾病中的重要性。

在这里,我们报告了一种协议,该协议允许特定血清型1菌株的全基因组诱变,519/43。这种菌株可以很容易地获得新的DNA并将其重组到其基因组中。这种方法还不是菌株间,但在519/43背景下完成时非常有效(其他靶标已经突变,手稿正在准备中)。通过简单地使用519/43菌株,并利用其自然能力,以及替代提供外源DNA的方式,我们能够突变该血清型1菌株中的肺溶血素基因(ply)。该方法代表了Harvey等人提出的方法的改进22 ,因为它是一步完成的,无需通过不同的血清型传代DNA。然而,由于菌株间变异性,没有一种方法适用于所有菌株。突变特定基因并观察其影响的能力将使人们深入了解血清型 1型肺炎链球菌 菌株,并将为这些菌株在撒哈拉以南非洲脑膜炎中的作用提供答案

Protocol

1. 通过SOE-PCR23 生成突变扩增子和扩增壮观霉素盒 首先进行PCR以扩增菌株519/43中层基因侧翼区域的同源臂(分别为ply 5’(488 bp)和ply3’(715 bp))。Use primers plyFw1_NOTI (TTT GCGGCCGCCAGTAAATGACTTTATACTAGCTATG), ply5’R1_BamHI (CGAAATATAGACCAAAGGACGC GGATCC AGAACCAAACTTGACCTTGA), ply3’F1_BamHI (TCAAGGTCAAGTTTGGTTCTGGATCC GCGTCCTTTGGTTTCG) 和plyRv2_NotI (TTTGCGGCCGCCATTTTCTACCTTATCCTCTACC). …

Representative Results

这里描述的方案首先使用PCR扩增左右同源臂,同时从 层 基因的中间区域删除191 bp。在进行PCR时,在左同源臂的3’和右同源臂的5’端引入BamHI位点(图1A)。接下来是PCR-SOE,其中左和右同源臂融合成一个扩增子(图1B)。然后将该SOE-PCR扩增子克隆到pGEMTeasy中使用TA克隆以生成质粒pSD1(图1C)。成功转化将产生对氨苄青霉素耐药…

Discussion

肺炎链球菌,特别是血清1型,仍然是引起侵袭性肺炎球菌疾病和脑膜炎的全球威胁。尽管在非洲引入了各种疫苗,可以预防血清型1,但这种血清型仍然能够引起导致高发病率和死亡率的暴发13。由于其临床相关性,遗传操纵这种血清型的能力至关重要。本研究中描述的方法允许对该血清型中的代表性菌株进行遗传操作。侵袭性菌株 519/43 (ST5316),一种来自丹麦脑膜炎患?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢脑膜炎信托基金和MRC为这项工作提供资金。

Materials

AccuPrime Pfx DNA polymerase Invitrogen 12344024 Used for amplification of the fragments
Ampicillin sodium salt Sigma Aldrich A9518 Used for bacterial selection on stage 1(pSD1)
Blood Agar Base Oxoid CM0055 Used to plate S. pneumoniae transformants
Bovine Serum Albumine sigma 55470 used for S. pneumoniae Transformation
Brain Heart Infusion Oxoid CM1135 used to grow S. pneumoniae cells
Calcium Chloride Cacl2 Sigma 449709 used for S. pneumoniae Transformation
Competence stimulating peptide 1 AnaSpec AS-63779 used for S. pneumoniae Transformation
Luria Broth Agar Gibco 22700025 used for plating and selection of pSD1 and pSD2
Luria Broth Base (Miller's formulation) Gibco 12795027 used for plating and selection of pSD1 and pSD2
Monarch Gel Extraction Kit NEB T1020S Used to extract the bands from the DNA gel
Monarch Plasmid Miniprep Kit NEB T1010S Used to extract plasmid from the cells
pGEM T-easy Promega A1360 used as suicide plasmid
S.O.C. Invitrogen 15544034 used for recovery of cells after transformation
Sodium Hydroxide (NaOH) Sigma S0899 used for S.pneumoniae Transformation
Spectinomycin Hydrochloride SigmaAldrich PHR1426 Used for bacterial selection
Subcloning Efficiency DH5α Competent Cells Invitrogen 18265017 used for the creation of pSD1 and pSD2

References

  1. Bentley, S. D., et al. Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes. PLoS Genetics. 2 (3), 31 (2006).
  2. Calix, J. J., Nahm, M. H. A new pneumococcal serotype, 11E, has a variably inactivated wcjE gene. The Journal of Infectious Diseases. 202 (1), 29-38 (2010).
  3. Park, I. H., Pritchard, D. G., Cartee, R., Brandao, A., Brandileone, M. C. C., Nahm, M. H. Discovery of a New Capsular Serotype (6C) within Serogroup 6 of Streptococcus pneumoniae. Journal of Clinical Microbiology. 45 (4), 1225-1233 (2007).
  4. Jin, P., et al. First Report of Putative Streptococcus pneumoniae Serotype 6D among Nasopharyngeal Isolates from Fijian Children. The Journal of Infectious Diseases. 200 (9), 1375-1380 (2009).
  5. Oliver, M. B., vander Linden, M. P. G., Küntzel, S. A., Saad, J. S., Nahm, M. H. Discovery of Streptococcus pneumoniae Serotype 6 Variants with Glycosyltransferases Synthesizing Two Differing Repeating Units. Journal of Biological Chemistry. 288 (36), 25976-25985 (2013).
  6. Calix, J. J., et al. Serological Characterization of Two Capsule Subtypes among Streptococcus pneumoniae Serotype 20 Strains. Journal of Biological Chemistry. 287 (33), 27885-27894 (2012).
  7. Park, I. H., et al. and Serological Characterization of a New Pneumococcal Serotype, 6H, and Generation of a Pneumococcal Strain Producing Three Different Capsular Repeat Units. Clinical and Vaccine Immunology. 22 (3), 313-318 (2015).
  8. O’Brien, K. L., et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. The Lancet. 374 (9693), 893-902 (2009).
  9. Henriques-Normark, B., Tuomanen, E. I. The Pneumococcus: Epidemiology, Microbiology, and Pathogenesis. Cold Spring Harbor Perspectives in Medicine. 3 (7), 010215 (2013).
  10. Leimkugel, J., et al. An Outbreak of Serotype 1 Streptococcus pneumoniae Meningitis in Northern Ghana with Features That Are Characteristic of Neisseria meningitidis Meningitis Epidemics. The Journal of Infectious Diseases. 192 (2), 192-199 (2005).
  11. Yaro, S., et al. Epidemiological and Molecular Characteristics of a Highly Lethal Pneumococcal Meningitis Epidemic in Burkina Faso. Clinical Infectious Diseases. 43 (6), 693-700 (2006).
  12. Antonio, M., et al. Molecular epidemiology of pneumococci obtained from Gambian children aged 2-29 months with invasive pneumococcal disease during a trial of a 9-valent pneumococcal conjugate vaccine. BMC Infectious Diseases. 8 (1), 81 (2008).
  13. Kwambana-Adams, B. A., et al. An outbreak of pneumococcal meningitis among older children (≥5 years) and adults after the implementation of an infant vaccination programme with the 13-valent pneumococcal conjugate vaccine in Ghana. BMC Infectious Diseases. 16 (1), 575 (2016).
  14. Antonio, M., et al. Seasonality and outbreak of a predominant Streptococcus pneumoniae serotype 1 clone from The Gambia: Expansion of ST217 hypervirulent clonal complex in West Africa. BMC Microbiology. 8 (1), 198 (2008).
  15. Staples, M., et al. Molecular characterization of an Australian serotype 1 Streptococcus pneumoniae outbreak. Epidemiology and Infection. 143 (2), 325-333 (2015).
  16. Gessner, B. D., Mueller, J. E., Yaro, S. African meningitis belt pneumococcal disease epidemiology indicates a need for an effective serotype 1 containing vaccine, including for older children and adults. BMC Infectious Diseases. 10 (1), 22 (2010).
  17. Hill, P. C., et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: a longitudinal study. Clinical Infectious Diseases. 46 (6), 807-814 (2008).
  18. Ebruke, C., et al. Temporal changes in nasopharyngeal carriage of Streptococcus pneumoniae serotype 1 genotypes in healthy Gambians before and after the 7-valent pneumococcal conjugate vaccine. PeerJ. 3, 90 (2015).
  19. Adegbola, R. A., et al. Serotype and antimicrobial susceptibility patterns of isolates of Streptococcus pneumoniae causing invasive disease in The Gambia 1996-2003. Tropical Medicine and International Health. 11 (7), 1128-1135 (2006).
  20. Marks, L. R., Reddinger, R. M., Hakansson, A. P. High Levels of Genetic Recombination during Nasopharyngeal Carriage and Biofilm Formation in Streptococcus pneumoniae. mBio. 3 (5), (2012).
  21. Ritchie, N. D., Mitchell, T. J., Evans, T. J. What is different about serotype 1 pneumococci. Future Microbiology. 7 (1), 33-46 (2012).
  22. Harvey, R. M., et al. The variable region of pneumococcal pathogenicity island 1 is responsible for unusually high virulence of a serotype 1 isolate. Infection and Immunity. 84 (3), 822-832 (2016).
  23. Horton, R. M., Cai, Z. L., Ho, S. N., Pease, L. R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. BioTechniques. 8 (5), 528-535 (1990).
  24. Alioing, G., Granadel, C., Morrison, D. A., Claverys, J. P. Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Molecular Microbiology. 21 (3), 471-478 (1996).
  25. Lund, E. . Enumeration and description of the strains belonging to the State Serum Institute, Copenhagen Denmark. , (1951).
  26. Barany, F., Tomasz, A. Genetic transformation of Streptococcus pneumoniae by heterologous plasmid deoxyribonucleic acid. Journal of Bacteriology. 144 (2), 698-709 (1980).
  27. Terra, V. S., Homer, K. A., Rao, S. G., Andrew, P. W., Yesilkaya, H. Characterization of novel β-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae. Infection and Immunity. 78 (1), (2010).
  28. Terra, V. S., Zhi, X., Kahya, H. F., Andrew, P. W., Yesilkaya, H. Pneumococcal 6-phospho-β-glucosidase (BglA3) is involved in virulence and nutrient metabolism. Infection and Immunity. 84 (1), (2015).
  29. Harvey, R. M., Ogunniyi, A. D., Chen, A. Y., Paton, J. C. Pneumolysin with Low Hemolytic Activity Confers an Early Growth Advantage to Streptococcus pneumoniae in the Blood. Infection and Immunity. 79 (10), 4122 (2011).
  30. Terra, V. S., Plumptre, C. D., Wall, E. C., Brown, J. S., Wren, B. W. Construction of a pneumolysin deficient mutant in Streptococcus pneumoniae serotype 1 strain 519/43 and phenotypic characterisation. Microbial Pathogenesis. 141, 103999 (2020).
check_url/61594?article_type=t

Play Video

Cite This Article
Terra, V. S., Plumptre, C. D., Wall, E. C., Brown, J. S., Wren, B. W. Constructing Mutants in Serotype 1 Streptococcus pneumoniae strain 519/43. J. Vis. Exp. (163), e61594, doi:10.3791/61594 (2020).

View Video