Summary

死后计算断层扫描中的图像渲染技术:受困鲸目动物的生物健康和特征评估

Published: September 27, 2020
doi:

Summary

香港鲸目动物搁浅反应计划纳入了验尸计算机断层扫描,提供有关死亡动物的生物健康和档案的宝贵资料。这项研究描述了8种图像渲染技术,这些技术对于识别和可视化搁浅鲸目动物的验尸发现至关重要,这将有助于全世界的临床医生、兽医和绞尽脑,充分利用放射性模式。

Abstract

在香港鲸目动物绞线反应计划、标准化病毒贴顶程序、验尸计算机断层扫描(PMCT)采集、后处理和评估方面拥有6年的经验,成功建立。在这个首创的鲸目动物病毒搁浅反应计划,PMCT被执行193个搁浅鲸目动物,提供验尸发现,以帮助尸检和揭示动物的生物健康和配置文件。本研究旨在评估PMCT中的8种图像渲染技术,包括多平面重建、弯曲平面改造、最大强度投影、最小强度投影、直接体积渲染、分割、传输函数和透视体积渲染。这些技术以实际实例说明,能够识别搁浅鲸目动物中的大多数PM发现,并用作调查其生物健康和特征的工具。这项研究可以指导放射科医生、临床医生和兽医完成PMCT图像渲染和审查这一通常困难和复杂的领域。

Introduction

Virtopsy,也称为验尸(PM)成像,是检查具有高级横截面成像模式的尸体,包括验尸计算机断层扫描(PMCT)、死后磁共振成像(PMMRI)和超声成像1。在人类中,PMCT有助于调查骨骼改变,,,2、3、,3异体、气态发现4、5、6,5和血管系统7、8、9病理的创伤性病例68自2014年以来,病毒性病毒一直在香港鲸目动物搁浅反应计划1中实施。PMCT 和 PMMRI 能够描绘尸体的病理形态学发现,这些发现过于分解,无法通过常规尸检进行评估。非侵入性放射性评估是客观的,以数字方式进行,允许第二次意见或回顾性研究多年后1,10,11。,10,11Virtopsy已成为一种有价值的替代技术,为12、13、14、15、16,13,14,等搁浅海洋动物的PM发现提供新的见解。结合尸检,这是解释病理生理重建和死因的黄金标准17,可以解决动物的生物健康和特征。Virtopsy已逐渐得到认可,并在全球实施绞线应对计划,包括但不限于哥斯达黎加、日本、中国大陆、新西兰、台湾、泰国和美国1。

放射学中的图像渲染技术使用计算机算法将数字转换为有关组织的信息。例如,放射性密度用传统的X射线和CT表示。大量的体积数据以医学(DICOM)格式存储为数字成像和通信。CT图像可用于在后处理3D工作站中使用二维(2D)和三维(3D)图像渲染来生成等向异性体美数据,用于高分辨率可视化18,19。18,定量,数据和结果被映射,以将连续获得的轴向图像转换为具有灰度或颜色参数19、20、21,203D图像。从不同的渲染技术中选择适当的数据可视化方法是可视化质量的一个基本技术决定因素,它极大地影响了对放射性结果的分析和解释。对于涉及没有任何放射学背景的人员的绞线工作来说,这一点尤其重要,他们需要了解不同情况下的结果。实施这些图像渲染技术的目标是提高解剖细节、关系和临床发现可视化的质量,从而提升成像的诊断价值,并允许有效再现感兴趣的目标区域17、19、22、23、24、25。,19,22,23,24,25

虽然主轴向CT/MRI图像包含大多数信息,但它们可能限制对病理的准确诊断或记录,因为各种正交平面上无法查看结构。其他解剖学对齐平面的图像转换允许从另一个角度可视化结构关系,而不必重新定位身体26。由于医学解剖学和法医病理学数据主要是3D性质,彩色编码PMCT图像和3D重建图像优先于灰度图像和2D切片图像,因为提高可理解性和适合法庭裁决27,28。,28随着PMCT技术的进步,鲸目动物PM调查中对可视化探索(即2D和3D图像的创建和解释)的关注已经引起关注,放射学工作站中的各种体积渲染技术使放射科医生、技术人员、转介临床医生(例如兽医和海洋哺乳动物科学家)甚至外行(例如绞线反应人员、政府官员和一般公众)能够可视化并研究感兴趣的区域。然而,选择适当的技术和术语的混淆仍然是一个主要问题。有必要了解常见技术的基本概念、优点和局限性,因为这将显著影响放射性发现诊断价值和解释。滥用技术可能会产生误导性的图像(例如,具有失真的图像、渲染错误、重建噪音或人工制品),并导致不正确的诊断 30

本研究旨在评估 PMCT 中的 8 种基本图像渲染技术,这些技术用于鉴定香港水域搁浅鲸目动物中大部分 PM 的发现。提供了每种技术的描述和实际示例,以指导全世界的放射科医生、临床医生和兽医完成 PMCT 图像渲染和审查这一通常困难而复杂的领域,以评估生物健康和轮廓。

Protocol

注:在香港鲸目动物病毒搁浅反应计划的框架内,搁浅的鲸目动物由PMCT进行例行检查。作者负责病毒处理扫描、数据后处理(例如图像重建和渲染)、数据解释和病毒处理报告1。这项先进技术强调细心的发现,并提供了在常规尸检(前)对PM发现的初步https://www.facebook.com/aquanimallab。 1. 数据准备 以 DICOM 3.0 格式导出获取的 CT 数据集。将 DICOM 文件夹复…

Representative Results

从2014年1月至2020年5月,PMCT共检查了193只搁浅于香港水域的鲸目动物,包括42只印度-太平洋座头鲸海豚 (Sousa chinensis)、130 只印度-太平洋无鳍海豚(新磷豚类)和21种其他物种。对136具尸体进行了全身扫描,57具对头骨和鳍进行部分扫描。通过8种图像渲染技术,对搁浅鲸目动物的生物健康和特征进行评价,对通常观察到的解剖特征和病理进行了说明。 <p class="jove_content" fo:keep-toget…

Discussion

为了清晰可视化病毒数据集,通常将 8 种图像渲染技术(包括 2D 和 3D 渲染)应用于每个搁浅尸体,以调查其生物健康和轮廓。这些渲染技术包括 MPR、CPR、MIP、MinIP、DVR、分段、TF 和 PVR。不同的渲染技术与窗口调整一起得到补充使用。介绍了每种图像改造技术的概念和优点。

多平面重建
MPR 是创建非轴 2D 图像的过程,包括日冕、下垂和任何解剖对齐的斜平面图…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢香港特别行政区政府渔农自然护理署对这项工程的持续支持。此外,我们亦衷心感谢来自香港城市大学水生动物病毒实验室、香港海洋公园保育基金会及香港海洋公园的兽医、职员及志愿者,为这项工程的搁浅反应付出巨大努力。特别感谢市大学兽医医疗中心和香港兽医影像中心的技术人员,他们负责进行本研究的CT和MRI单位。此处表达的任何意见、结论、结论或建议,并不一定反映海洋生态改善基金或受托人的意见。该项目由香港研究资助局(资助编号:UGC/FDS17/M07/14)及海洋生态改善基金(资助编号:MEEF2017014、MEEF2017014A、MEEF2019010及 MEEF2019010A)、海洋生态改善基金、海洋生态及渔业增强基金受托人有限公司资助。特别感谢玛丽亚·何塞·罗伯斯·马拉贡巴博士对这份手稿进行英文编辑。

Materials

Aquarius iNtuition workstation TeraRecon Inc NA
Siemens 64-row multi-slice spiral CT scanner Somatom go.Up Siemens Healthineers NA

References

  1. Tsui, H. C. L., Kot, B. C. W., Chung, T. Y. T., Chan, D. K. P. Virtopsy as a revolutionary tool for cetacean stranding programs: Implementation and management. Frontiers in Marine Sciences. , (2020).
  2. Jacobsen, C., Bech, B. H., Lynnerup, N. A comparative study of cranial, blunt trauma fractures as seen at medicolegal autopsy and by computed tomography. BMC Medical Imaging. 9 (18), 1-9 (2009).
  3. Jacobsen, C., Lynnerup, N. Craniocerebral trauma–congruence between post-mortem computed tomography diagnoses and autopsy results: a 2-year retrospective study. Forensic Science International. 194 (1-3), 9-14 (2010).
  4. Plattner, T., et al. Virtopsy-postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) in a fatal scuba diving incident. Journal of Forensic Sciences. 48 (6), 1347-1355 (2003).
  5. Jackowski, C., et al. Visualization and quantification of air embolism structure by processing postmortem MSCT data. Journal of Forensic Sciences. 49 (6), 1339-1342 (2004).
  6. Aghayev, E., et al. Pneumomediastinum and soft tissue emphysema of the neck in postmortem CT and MRI; a new vital sign in hanging. Forensic Science International. 153 (2-3), 181-188 (2005).
  7. Jackowski, C., Persson, A., Thali, M. J. Whole Body Postmortem Angiography with a High Viscosity Contrast Agent Solution Using Poly Ethylene Glycol as Contrast Agent Dissolver. Journal of Forensic Sciences. 53 (2), 465-468 (2008).
  8. Jackowski, C., et al. Virtopsy: postmortem minimally invasive angiography using cross section techniques – implementation and preliminary results. Journal of Forensic Sciences. 50 (5), 1175-1186 (2005).
  9. Grabherr, S., et al. Postmortem CT angiography compared with autopsy: a forensic multicenter study. Radiology. 288 (1), 270-276 (2018).
  10. Yuen, A. H. L., Tsui, H. C. L., Kot, B. C. W. Accuracy and reliability of cetacean cranial measurements using computed tomography three dimensional volume rendered images. PloS one. 12 (3), 0174215 (2017).
  11. Kot, B. C. W., Chan, D. K. P., Yuen, A. H. L., Tsui, H. C. L. Diagnosis of atlanto-occipital dissociation: Standardised measurements of normal craniocervical relationship in finless porpoises (genus Neophocaena) using postmortem computed tomography. Scientific Reports. 8, 8474 (2018).
  12. Chan, D. K. P., Tsui, H. C. L., Kot, B. C. W. Database documentation of marine mammal stranding and mortality: current status review and future prospects. Diseases of Aquatic Organisms. 126 (3), 247-256 (2017).
  13. Chan, D. K. P., Kot, B. C. W. Cetaceans postmortem multimedia analysis platform (CPMAP): pilot web-accessed database of a virtopsy-driven stranding response program in the Hong Kong waters. Proceedings of International Association for Aquatic Animal Medicine 48th Annual Conference, Cancun, MEX. , (2017).
  14. Hamel, P. E. S., et al. Postmortem computed tomography and magnetic resonance imaging findings in a case of coinfection of dolphin morbillivirus and Aspergillus fumigatus in a juvenile bottlenose dolphin (Tursiops truncatus). Journal of Zoo and Wildlife Medicine. 51 (2), 448-454 (2020).
  15. Weisbrod, T. C., Walsh, M. T., Marquardt, S., Giglio, R. F. Computed tomography diagnosis of pneumothorax and cardiac foreign body secondary to stingray injury in a bottlenose dolphin (Tursiops truncatus). Aquatic Mammals. 46 (3), 326-330 (2020).
  16. Kot, B. C. W., Tsui, H. C. L., Chung, T. Y. T., Lau, A. P. Y. Postmortem neuroimaging of cetacean brains using computed tomography and magnetic resonance imaging. Frontiers in Marine Science. , (2020).
  17. Lundström, C., et al. State-of-the-art of visualization in post-mortem imaging. Acta Pathologica, Microbiologica, et Immunologica Scandinavica. 120 (4), 316-326 (2012).
  18. Lipson, S. A. . MDCT and 3D Workstations. , (2006).
  19. Perandini, S., Faccioli, N., Zaccarella, A., Re, T. J., Mucelli, R. P. The diagnostic contribution of CT volumetric rendering techniques in routine practice. Indian Journal of Radiology and Imaging. 20 (2), 92-97 (2010).
  20. Pavone, P., Luccichenti, G., Cademartiri, F. From maximum intensity projection to volume rendering. Seminars in Ultrasound, CT and MRI. 22 (5), 413-419 (2001).
  21. Fishman, E. K., et al. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. RadioGraphics. 26 (3), 905-922 (2006).
  22. Udupa, J. K. Three-dimensional visualization and analysis methodologies: a current perspective. RadioGraphics. 19 (3), 783-806 (1999).
  23. Thali, M. J., et al. a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) – a feasibility study. Journal of Forensic Sciences. 48 (2), 386-403 (2003).
  24. Dalrymple, N. C., Prasad, S. R., Freckleton, M. W., Chintapalli, K. N. Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. RadioGraphics. 25 (5), 1409-1428 (2005).
  25. Thali, M. J., et al. Virtopsy – documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning. Journal of Forensic Sciences. 50 (2), 428-442 (2015).
  26. Tsui, H. C. L., Kot, B. C. W. Role of image reformation techniques in postmortem computed tomography imaging of stranded cetaceans. Proceedings of International Association for Aquatic Animal Medicine 47th Annual Conference. , (2016).
  27. Ampanozi, G., et al. Format preferences of district attorneys for post-mortem medical imaging reports: understandability, cost effectiveness, and suitability for the courtroom: a questionnaire based study. Legal Medicine (Tokyo). 14 (3), 116 (2012).
  28. Ebert, L. C., et al. Forensic 3D visualization of CT data using cinematic volume rendering: a preliminary study. American Journal of Roentgenology. 208 (2), 233-240 (2017).
  29. Alonso-Farré, J. M., et al. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella Coeruleoalba). Anatomia, Histologia, Embryologia. 44 (1), 13-21 (2015).
  30. Gascho, D., Thali, M. J., Niemann, T. Post-mortem computed tomography: technical principles and recommended parameter settings for high-resolution imaging. Medicine, Science and the Law. 58 (1), 70-83 (2018).
  31. Lee, E. Y., et al. MDCT evaluation of thoracic aortic anomalies in pediatric patients and young adults: comparison of axial, multiplanar, and 3D images. American Journal of Roentgenology. 182 (3), 777-784 (2004).
  32. Errickson, D., Thompson, T. J. U., Rankin, B. W. J. The application of 3D visualization of osteological trauma for the courtroom: a critical review. Journal of Forensic Radiology and Imaging. 2 (3), 132-137 (2014).
  33. Prokop, M., Galanski, M. . Spiral and multislice computed tomography of the body. , (2003).
  34. Kawel, N., Seifert, B., Luetolf, M., Boehm, T. Effect of slab thickness on the CT detection of pulmonary nodules: use of sliding thin-slab maximum intensity projection and volume rendering. American Journal of Roentgenology. 192 (5), 1324-1329 (2009).
  35. Vlassenbroek, A. The use of isotropic imaging and computed tomography reconstructions. Comparative Interpretation of CT and Standard Radiography of the Chest, Medical Radiology. , 53-73 (2011).
  36. van Ooijen, P. M., et al. Noninvasive coronary imaging using electron beam CT: surface rendering versus volume rendering. American Journal of Roentgenology. 180 (1), 223-226 (2003).
  37. Remy-Jardin, M., Remy, J., Artaud, D., Fribourg, M., Duhamel, A. Volume rendering of the tracheobronchial tree: clinical evaluation of bronchographic images. Radiology. 208 (3), 761-770 (1998).
  38. Bassett, J. T., Liotta, R. A., Barlow, D., Lee, D., Jensen, D. Colonic perforation during screening CT colonography using automated CO2 insufflation in an asymptomatic adult. Abdominal Imaging. 33 (5), 598-600 (2008).
check_url/61701?article_type=t

Play Video

Cite This Article
Kot, B. C. W., Chan, D. K. P., Chung, T. Y. T., Tsui, H. C. L. Image Rendering Techniques in Postmortem Computed Tomography: Evaluation of Biological Health and Profile in Stranded Cetaceans. J. Vis. Exp. (163), e61701, doi:10.3791/61701 (2020).

View Video