Summary

使用近红外光谱测量血液透析患者的组织氧合

Published: October 02, 2020
doi:

Summary

我们提出了一种通过使用近红外光谱监测仪测量血液透析(HD)患者区域氧饱和度(rSO2)的方案。rSO2 值是组织氧合的指标。这种无创和实时监测可能有助于确认HD期间器官氧合的变化。

Abstract

近红外光谱(NIRS)最近已被用作测量区域氧饱和度(rSO2)的工具,这是组织氧合的标志物,用于心血管和脑外科手术,新生儿监测和院前医学等临床环境。近红外光谱监测设备是实时和非侵入性的,主要用于评估危重患者在手术或重症监护期间的脑氧合。到目前为止,包括血液透析(HD)在内的慢性肾脏病(CKD)患者使用近红外光谱监测是有限的;因此,我们研究了HD期间某些器官的rSO2 值。我们使用近红外光谱设备以2个附着波长发射近红外光,监测rSO2 值。HD患者仰卧位,将rSO2 测量传感器分别连接到额头、右肋骨和小腿,以评估大脑、肝脏和小腿肌肉中的rSO2 。近红外光谱监测可能是阐明HD患者器官氧合变化或影响CKD患者组织氧合的因素的新方法。本文描述了一种测量以rSO2 为代表的组织氧合的方案,应用于HD患者。

Introduction

近红外光谱(NIRS)已被用于评估区域氧饱和度(rSO 2),这是组织氧合的标志物,特别是在各种临床环境中的脑氧合123,最近已应用于接受血液透析(HD)的患者456789,1011. 据报道,脑 rSO2 与亨廷顿舞蹈症患者或非透析慢性肾脏病 (CKD) 患者的认知功能有关1112。然而,到目前为止,近红外光谱监测在CKD患者中的使用受到限制。

由于近红外光谱监测是实时和非侵入性的,我们评估了其作为HD患者监测设备的实用性。虽然近红外光谱主要用于测量大脑rSO 2,但我们也研究了HD期间其他器官的rSO2值。 具体来说,将rSO 2测量传感器连接到前额,右肋骨和小腿,以分别评估大脑,肝脏和下肌肉中的rSO2结果表明,近红外监测可能是阐明HD患者器官氧合变化或影响CKD患者组织氧合的因素的新方法。

迄今为止,在临床环境中,在HD,血容量监测,中心静脉血氧饱和度,胸廓入院和电子听诊器引导的估计血压(BP)期间进行了连续监测131415;然而,低血压的预测或设备的广泛使用存在局限性。相比之下,这里的新无创方法可以提供单个器官中透析内氧动力学的实时信息。因此,这种监测方法可以允许在透析内低血压的早期阶段检测短暂的器官缺血,也可以允许HD的安全表现。本文描述了一种测量以rSO2为代表的组织氧合的方案,应用于HD患者。

Protocol

所有参与者都提供了书面知情同意书。该研究得到了日本吉智医科大学埼玉医学中心机构审查委员会的批准(RIN 15-104)。 1. 用于监测rSO 2 的装置 准备用于测量组织氧合的近红外光谱设备。该设备有四个通道,可以同时在多达四个器官中进行测量。 准备一个用于近红外光谱监测的测量传感器,通过发射两个附着波长的近红外光来评估每个器官中的 rSO<su…

Representative Results

HD前脑rSO 2值低于健康受试者,HD糖尿病(DM)患者脑rSO2低于无DMHD患者(图1)16。此外,尽管HD期间组织氧合继续且血压没有降低,但我们偶然观察到由于透析内低血压引起的脑和肝脏rSO 2的变化(图2)。由于连续监测,组织氧合的变化比间歇监测血压更快。 数据表示为标准误差±平均值。非配对值的方差分析?…

Discussion

近红外光谱监测主要用于评估脑rSO2,特别是在需要体外循环的心脑血管手术中。在包括亨廷顿舞蹈症治疗在内的体外循环中,一些器官可能显示相对缺血71718;然而,目前尚不清楚组织氧合是否变得低。亨廷顿舞蹈症期间的肌肉痉挛或腹痛可能是透析内器官灌注不足引起的低灌注前驱症状之一。然而,在HD治疗中,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢吉智医科大学埼玉医学中心的透析人员和肾脏科的成员。我们要感谢意得辑(www.editage.com)的英文编辑。

Materials

DBB-100NX Nikkiso DBB-100NX Dialysis machine
INVOS 5100c Covidien Japan INVOSTM 5100c tissue oxygenation device
SOMASENSER Covidien Japan CV-SAFB-SM/INTL NIRS sensor

References

  1. Nishiyama, K., et al. Regional cerebral oxygen saturation monitoring for predicting interventional outcomes in patients following out-of-hospital cardiac arrest of presumed cardiac cause: A prospective, observational, multicentre study. Resuscitation. 96, 135-141 (2015).
  2. Kobayashi, K., et al. Factors associated with a low initial cerebral oxygen saturation value in patients undergoing cardiac surgery. Journal of Artificial Organs. 20 (2), 110-116 (2017).
  3. Cruz, S. M., et al. A novel multimodal computational system using near-infrared spectroscopy predicts the need for ECMO initiation in neonates with congenital diaphragmatic hernia. Journal of Pediatric Surgery. 53 (1), 152-158 (2018).
  4. MacEwen, C., Sutherland, S., Daly, J., Pugh, C., Tarassenko, L. Relationship between Hypotension and Cerebral Ischemia during Hemodialysis. Journal of the American Socociety of Nephrology. 28 (8), 2511-2520 (2017).
  5. Polinder-Bos, H. A., et al. Changes in cerebral oxygenation and cerebral blood flow during hemodialysis – A simultaneous near-infrared spectroscopy and positron emission tomography study. Journal of Cerebral Blood Flow & Metablism. 40 (2), 328-340 (2020).
  6. Ookawara, S., et al. Differences in tissue oxygenation and changes in total hemoglobin signal strength in the brain, liver, and lower-limb muscle during hemodialysis. Journal of Artificial Organs. 21 (1), 86-93 (2018).
  7. Malik, J., et al. Tissue ischemia worsens during hemodialysis in end-stage renal disease patients. The Journal of Vascular Access. 18 (1), 47-51 (2017).
  8. Ito, K., et al. Cerebral oxygenation improvement is associated with hemoglobin increase after hemodialysis initiation. TheInternational Journal of Artificial Organs. , (2020).
  9. Valerianova, A., et al. Factors responsible for cerebral hypoxia in hemodialysis population. Physiological Research. 68 (4), 651-658 (2019).
  10. Ookawara, S., et al. Associations of cerebral oxygenation with hemoglobin levels evaluated by near-infrared spectroscopy in hemodialysis patients. PLoS One. 15 (8), 0236720 (2020).
  11. Kovarova, L., et al. Low Cerebral Oxygenation Is Associated with Cognitive Impairment in Chronic Hemodialysis Patients. Nephron. 139 (2), 113-119 (2018).
  12. Miyazawa, H., et al. Association of cerebral oxygenation with estimated glomerular filtration rate and cognitive function in chronic kidney disease patients without dialysis therapy. PLoS One. 13 (6), 0199366 (2018).
  13. Locatelli, F., et al. Haemodialysis with on-line monitoring equipment: tools or toys. Nephrology Dialysis Transplantation. 20 (1), 22-33 (2005).
  14. Cordtz, J., Olde, B., Solem, K., Ladefoged, S. D. Central venous oxygen saturation and thoracic admittance during dialysis: new approaches to hemodynamic monitoring. Hemodialysis International. 12 (3), 369-377 (2008).
  15. Kamijo, Y., et al. Continuous monitoring of blood pressure by analyzing the blood flow sound of arteriovenous fistula in hemodialysis patients. Clinical and Experimental Nephrology. 22 (3), 677-683 (2018).
  16. Ito, K., et al. Factors affecting cerebral oxygenation in hemodialysis patients: cerebral oxygenation associates with pH, hemodialysis duration, serum albumin concentration, and diabetes mellitus. PLoS One. 10 (2), 0117474 (2015).
  17. Imai, S., et al. Deterioration of Hepatic Oxygenation Precedes an Onset of Intradialytic Hypotension with Little Change in Blood Volume during Hemodialysis. Blood Purification. 45 (4), 345-346 (2018).
  18. Cho, A. R., Kwon, J. Y., Kim, C., Hong, J. M., Kang, C. Effect of sensor location on regional cerebral oxygen saturation measured by INVOS 5100 in on-pump cardiac surgery. Journal of Anesthesia. 31 (2), 178-184 (2017).
  19. Ito, K., et al. Deterioration of cerebral oxygenation by aortic arch calcification progression in patients undergoing hemodialysis: A cross-sectional study. BioMed Research International. , 2852514 (2017).
  20. Ito, K., et al. Blood transfusion during haemodialysis improves systemic tissue oxygenation: A case report. Nefrologia. 37 (4), 435-437 (2017).
  21. Ito, K., et al. Improvement of bilateral lower-limb muscle oxygenation by low-density lipoprotein apheresis in a patient with peripheral artery disease undergoing hemodialysis. Nefrologia. 39 (1), 90-92 (2019).
  22. Kitano, T., et al. Changes in tissue oxygenation in response to sudden intradialytic hypotension. Journal of Artificial Organs. 23 (2), 187-190 (2020).
  23. Lemmers, P. M. A., Toet, M. C., van Bel, F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics. 121, 142-147 (2008).
  24. Ito, K., et al. Sleep apnea syndrome caused lowering of cerebral oxygenation in a hemodialysis patient: a case report and literature review. Renal Replacement Therapy. 4, 54 (2018).
  25. Minato, S., et al. Continuous monitoring of changes in cerebral oxygenation during hemodialysis in a patient with acute congestive heart failure. Journal of Artificial Organs. , (2019).

Play Video

Cite This Article
Ito, K., Ookawara, S., Uchida, T., Hayasaka, H., Kofuji, M., Miyazawa, H., Aomatsu, A., Ueda, Y., Hirai, K., Morishita, Y. Measurement of Tissue Oxygenation Using Near-Infrared Spectroscopy in Patients Undergoing Hemodialysis. J. Vis. Exp. (164), e61721, doi:10.3791/61721 (2020).

View Video