Summary

En orthotopic Resectional Mouse Model af kræft i bugspytkirtlen

Published: September 24, 2020
doi:

Summary

I den kliniske sammenhæng, patienter med lokaliseret kræft i bugspytkirtlen vil gennemgå pancreatectomy efterfulgt af adjuvans behandling. Denne protokol rapporteret her har til formål at etablere en sikker og effektiv metode til modellering dette kliniske scenario i nøgne mus, gennem orthotopic implantation af kræft i bugspytkirtlen efterfulgt af distal bugspytkirtelektomi og splenectomy.

Abstract

Der er mangel på tilfredsstillende dyremodeller til at studere adjuvans og / eller neoadjuvans behandling hos patienter, der overvejes til operation af kræft i bugspytkirtlen (PC). For at løse denne mangel, beskriver vi en mus model, der involverer orthotopic implantation af PC efterfulgt af distal pancreatectomy og splenectomy. Modellen har vist sig at være sikker og passende fleksibel til undersøgelse af forskellige terapeutiske tilgange i adjuvans og neo adjuvans indstillinger.

I denne model, en bugspytkirtel tumor er først genereret ved at implantere en blanding af humane kræftceller i bugspytkirtlen celler (luciferase-tagged AsPC-1) og human kræft forbundet bugspytkirtel stjernernes celler i distale bugspytkirtel af Balb / c athymisk nøgen mus. Efter tre uger, kræften er resected af re-laparotomi, distal pancreatectomy og splenectomy. I denne model, bioluminescens imaging kan bruges til at følge udviklingen i kræft udvikling og virkningerne af resektion / behandlinger. Efter resektion kan adjuvansbehandling gives. Alternativt kan neoadjuvansbehandling gives før resektion.

Repræsentative data fra 45 mus præsenteres. Alle mus gennemgik vellykket distal pancreatectomy / splenectomy uden problemer med hemostase. En makroskopisk proksimal pancreas margin større end 5 mm blev opnået i 43 (96%) Mus. Den tekniske succesrate for pancreas resektion var 100%, med 0% tidlig dødelighed og sygelighed. Ingen af dyrene døde i løbet af ugen efter resektion.

Sammenfattende beskriver vi en robust og reproducerbar teknik til en kirurgisk resektionsmodel af kræft i bugspytkirtlen hos mus, der efterligner det kliniske scenarie. Modellen kan være nyttig til testning af både adjuvans- og neoadjuvansbehandlinger.

Introduction

Bugspytkirtelkanalen adenocarcinoma (kræft i bugspytkirtlen [PC]) er forbundet med en dårlig prognose1. Kirurgisk resektion er fortsat den eneste potentielt helbredende behandling for PC og bør overvejes for patienter, der præsenterer med tidlig sygdom. Desværre, selv med R0 resektion (dvs. resektion margener fri for tumor), gentagelseshastigheden (lokal eller fra uopdaget metastatisk sygdom) er høj2,3. Derfor er systemisk adjuvansbehandling angivet hos næsten alle patienter, der gennemgår resektion4. Desuden, mens neoadjuvans terapi nu kun anbefales til borderline-resectable kræftformer, dens indikationer er ved at udvide sådan, at dens rutinemæssige brug er i fokus for meget klinisk forskning5,6,7,8. For at udvikle nye terapeutiske tilgange til pc,der involverer resektion, skal disse tilgange først vurderes i prækliniske modeller, der nøjagtigt opsummerer kliniske indstillinger.

Orthotopic mus modeller af PC er blevet ofte brugt i fortiden til at teste medicinske behandlinger9,10. Mange af disse blev produceret ved injektion af kræftceller alene i musen bugspytkirtel, hvilket resulterer i tumorer, der manglede den fremtrædende stroma, der er karakteristisk for PC. For nylig, co-injektion orthotopic modeller, som den, vi først udviklet ved at injicere en blanding af human pc og menneskelige bugspytkirtel stellate celler (PSC’ er, de primære producenter af kollagen stroma i PC), er kommet i regelmæssig brug11,12. Tumorerne produceret af en sådan co-injektion af kræft og stromale celler udviser (i) både kræftelementer og den karakteristiske stromale (desmoplastiske) komponent af PC, og (ii) forbedret kræftcellespredning og metastase11. Således ligner denne model meget menneskelig pc. Mens en række resectional modeller af orthotopic PC er blevet beskrevet13,14,15,16, ingen har afspejlet de kliniske realiteter i bugspytkirtlen resektion hos mennesker så nøjagtige som denne model, og derfor har været suboptimal for test adjuvans eller neoadjuvans behandlinger.

Formålet med den fremlagte musemodel var at demonstrere, hvordan man: (i) med succes implanterer orthotopic kræft i bugspytkirtlen og samtidig minimere utilsigtet peritoneal formidling og (ii) efterfølgende helt resect kræften. Papiret fremhæve tips og potentielle faldgruber i denne teknik.

Protocol

Alle procedurer blev godkendt af Animal Care and Ethics Committee ved University of New South Wales (17/109A). Kvindelige athymiske Balb/c nøgne mus i alderen 8-10 uger, der vejer 16-19 g, blev brugt til denne protokol. Mus blev anbragt i mikroisolatorbure og fodret kommercielt tilgængelige pelleted mad og vand ad libitum. 1. Orthotopic kræft i bugspytkirtlen implantation Gør cellerne klar til implantation. Først skal du beregne antallet af celler, der kræves til proce…

Representative Results

59 mus i træk blev opereret for implantation. Bruttolækage opstod i otte (14%) Mus. Lækagegraden på injektionstidspunktet anslås som beskrevet ovenfor i protokolafsnittet. Efter tre uger til at tillade disse implanterede tumorer til at vokse, præ-resektion bioluminescens imaging blev udført for at udelukke mus med brutto metastatisk sygdom før resektion. 45 år (76 %) mus gennemgik kirurgisk resektion. Alle 45 (100%) mus gennemgik vellykket distal pancreatectomy / splenectomy uden prob…

Discussion

En resectional orthotopic mus model af kræft i bugspytkirtlen er vigtig, fordi det giver mulighed for test af adjuvans og neoadjuvan behandlinger. Dette er især vigtigt i kræft i bugspytkirtlen, hvor kirurgi er fortsat den mest effektive behandling, men er forbundet med høj risiko for tilbagefald. Dette papir beskriver en metode, som pålideligt vil producere en kræft i bugspytkirtlen, som potentielt kan helbredes med resektion, replikere det kliniske scenario, hvor neoadjuvans / adjuvans behandling er påkrævet.</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfattere har modtaget støtte fra Avner Kræft i bugspytkirtlen Foundation.

Materials

Animals, Materials and Equipment for Implantation Procedure
AsPC-1 human pancreatic cancer cell line, luciferase tagged (luc+ gene from Promega PGL3 Basic plasmid) American Type Culture Collection, Manassas, VA, USA supplied by Professor Takashi Murakami, Saitama Medical University, Saitama, Japan
Autoclip wound clips, 9 mm Becton Dickson Pty Ltd, North Ryde, NSW, Australia 500346
Basic Dressing Pack Multigate Medical Products Pty Ltd, Villawood, NSW, Australia
Cancer associated human pancreatic stellate cells Pancreatic Research Group cell bank In house cell bank
Cryogenic tubes, 1.0 mL Thermo Fisher Scientific Australia Pty Ltd, Scoresby, VIC, Australia 366656
Disposable stainless-steel scalpel blade with handle, size 15 Livingstone International, Mascot, NSW, SCP15
Foetal bovine serum (FBS) Life Technologies Corporation, Tullamarine, VIC, Australia 16000044
Gilles fine tooth forceps 12 cm Generic stainless steel microsurgical instrument set
Heated mats to maintain body temperature during surgery and postoperative recovery Generic
Homozygous athymic nude mice: Strain BALB/c-Fox1nu/Ausb, female Australian Bioresources, Moss Vale, NSW, Australia
Iscove's modified Dulbecco's medium (IMDM) with 4mM L-glutamine and no phenol red Life Technologies Corporation, Tullamarine, VIC, Australia 21056023
Jewellers forceps 11.5 cm Generic stainless steel microsurgical instrument set
Micro needle holder (round handle) 15 cm straight Generic stainless steel microsurgical instrument set
Micro scissors (round handle) 15 cm straight Generic stainless steel microsurgical instrument set
Penicillin 10,000 U/mL, streptomycin 10,000 μg/mL Life Technologies Corporation, Tullamarine, VIC, Australia 15140122
Polyglycolic acid suture, size USP 5/0 on 13mm half-circle round-bodied needle Braun Australia Pty Ltd, Bella Vista, NSW, Australia C1049407
Portable weighing scale Precision balances, Bradford, MA, USA
Reflex clip applier and clip remover World Precision Instruments, Sarasota, FL, USA 500345
Roswell Park Memorial Institute (RPMI) 1640 with phenol red and 300 mg/L Lglutamine Life Technologies Corporation, Tullamarine, VIC, Australia 11875085
Round bodied vessel dilator 15 cm, 0.1 mm tip Generic stainless steel microsurgical instrument set
Trypsin 0.05%, EDTA 0.02% Life Technologies Corporation, Tullamarine, VIC, Australia 25300054 For pancreatic stellate cells
Trypsin 0.25%, EDTA 0.02% Life Technologies Corporation, Tullamarine, VIC, Australia 25200056 For ASPC-1 cells
U-100 insulin syringes, 0.5 mL with 29 G (0.33 mm) × 13 mm needle Terumo Medical Corporation, Elkton, MD, USA
Equipment for Resection Procedure
Alm self-retaining retractor Generic stainless steel microsurgical instrument set
Autoclip wound clips 9 mm Becton Dickson Pty Ltd, North Ryde, NSW 500346
Basic Dressing Pack Multigate Medical Products Pty Ltd, Villawood, NSW, Australia 08-559NP
Disposable stainless-steel scalpel blade with handle, size 15 Livingstone International, Mascot, NSW, SCP15
Gilles fine tooth forceps 12 cm Generic stainless steel microsurgical instrument set
Hand-held high temperature fine tip cautery Bovie Medical Corporation, Melville, NY, USA AA01
Heated mats to maintain body temperature during surgery and postoperative recovery Generic
IVIS Lumina II Bioluminescent Imaging Device Caliper Life Sciences, Hopkinton, MA, USA
Jewellers forceps 11.5 cm Generic stainless steel microsurgical instrument set
Micro needle holder (round handle) 15 cm straight Generic stainless steel microsurgical instrument set
Micro scissors (round handle) 15 cm straight Generic stainless steel microsurgical instrument set
Polyglycolic acid suture, size USP 5/0 on 13mm half-circle round-bodied needle Braun Australia Pty Ltd, Bella Vista, NSW, Australia C1049407
Portable weighing scale Precision balances, Bradford, MA, USA
Reflex wound clip applier and clip remover World Precision Instruments, Sarasota, FL, USA 500345
Round bodied vessel dilator 15 cm, 0.1 mm tip Generic stainless steel microsurgical instrument set
Titanium “Weck style” Ligaclip, small HZMIM, Hangzhou, China
Titanium Ligaclip applier for open surgery, small HZMIM, Hangzhou, China
Volatile anaesthetic machine, including vapouriser and induction chamber Generic Generic vapouriser and induction chamber
Drugs for Procedures
70% w/w ethanol solution Sigma-Aldrich Pty Ltd, Castle Hill, NSW, Australia Applied topically as surgical skin preparation
Buprenorphine 0.3 mg/mL Troy Laboratories Pty Ltd, Glendenning, NSW, Australia Dose: 0.05 mg/kg s.c.
D-Luciferin (1 U/g) PerkinElmer, Inc., Waltham, MA, USA 122799 diluted in PBS to 15 mg/mL. Dose: 150 mg/kg i.p
Enrofloxacin 50 mg/mL Troy Laboratories Pty Ltd, Glendenning, NSW, Australia Dose: 5 mg/kg s.c.
Flunixin 50 mg/mL Norbrook Laboratories Australia, Tullamarine, VIC, Australia Dose: 2.5 mg/kg s.c.
Isoflurane Zoetis Australia Pty Ltd., Rhodes, NSW, Australia Dose (vapourised with oxygen): 4% induction, 3% maintenance
Ketamine 100 mg/mL Maylab, Slacks Creek, QLD, Australia Dose: 80 mg/kg i.p.
Povidone-Iodine 10% w/v solution Perrigo Australia, Balcatta, WA, Australia RIO00802F Applied topically to the anterior abdomen as surgical skin preparation
Refresh eye ointment (liquid paraffin 42.5% w/w, soft white paraffin 57.3% w/w) Allergan Australia Pty Ltd, Gordon, NSW, Australia Applied to both eyes
Sodium chloride 0.9% w/v Braun Australia Pty Ltd, Bella Vista, NSW, Australia 9481P Dose: 900 μL s.c.
Water for injections BP Pfizer Australia, Sydney, NSW, Australia For dilution of drugs
Xylazine 20 mg/mL Troy Laboratories Pty Ltd, Glendenning, NSW, Australia Dose: 10 mg/kg i.p.

References

  1. . SEER Cancer Statistics Review, 1975-2015, National Cancer Institute Available from: https://seer.cancer.gov/csr/1975_2015/ (2018)
  2. Sugiura, T., et al. Margin status, recurrence pattern, and prognosis after resection of pancreatic cancer. Surgery. 154 (5), 1078-1086 (2013).
  3. Hishinuma, S., et al. Patterns of recurrence after curative resection of pancreatic cancer, based on autopsy findings. Journal of Gastrointestinal Surgery. 10 (4), 511-518 (2006).
  4. NCCN Clinical Practice Guidelines in Oncology – Pancreatic Adenocarcinoma (Version 3.2019). National Comprehensive Cancer Network Available from: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (2019)
  5. Breslin, T. M., et al. Neoadjuvant chemoradiotherapy for adenocarcinoma of the pancreas: treatment variables and survival duration. Annals of Surgical Oncology. 8 (2), 123-132 (2001).
  6. Mokdad, A. A., et al. Neoadjuvant Therapy Followed by Resection Versus Upfront Resection for Resectable Pancreatic Cancer: A Propensity Score Matched Analysis. Journal of Clinical Oncology. 35 (5), 515-522 (2017).
  7. Tachezy, M., et al. Sequential neoadjuvant chemoradiotherapy (CRT) followed by curative surgery vs. primary surgery alone for resectable, non-metastasized pancreatic adenocarcinoma: NEOPA- a randomized multicenter phase III study (NCT01900327, DRKS00003893, ISRCTN82191749). BMC Cancer. 14, 411 (2014).
  8. Barbour, A. P., et al. The AGITG GAP Study: A Phase II Study of Perioperative Gemcitabine and Nab-Paclitaxel for Resectable Pancreas Cancer. Annals of Surgical Oncology. , (2020).
  9. Fu, X., Guadagni, F., Hoffman, R. M. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proceedings of the National Academy of Sciences of the United States of America. 89 (12), 5645-5649 (1992).
  10. Marincola, F., Taylor-Edwards, C., Drucker, B., Holder, W. D. Orthotopic and heterotopic xenotransplantation of human pancreatic cancer in nude mice. Current Surgery. 44 (4), 294-297 (1987).
  11. Vonlaufen, A., et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Research. 68 (7), 2085-2093 (2008).
  12. Xu, Z., et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. American Journal of Pathology. 177 (5), 2585-2596 (2010).
  13. Tepel, J., et al. Adjuvant treatment of pancreatic carcinoma in a clinically adapted mouse resection model. Pancreatology. 6 (3), 240-247 (2006).
  14. Torgenson, M. J., et al. Natural history of pancreatic cancer recurrence following “curative” resection in athymic mice. Journal Surgical Research. 149 (1), 57-61 (2008).
  15. Metildi, C. A., et al. Fluorescence-guided surgery allows for more complete resection of pancreatic cancer, resulting in longer disease-free survival compared with standard surgery in orthotopic mouse models. Journal of the American College of Surgeons. 215 (1), 126-135 (2012).
  16. Ni, X., Yang, J., Li, M. Imaging-guided curative surgical resection of pancreatic cancer in a xenograft mouse model. Cancer Letters. 324 (2), 179-185 (2012).
  17. Hiroshima, Y., et al. Hand-held high-resolution fluorescence imaging system for fluorescence-guided surgery of patient and cell-line pancreatic tumors growing orthotopically in nude mice. Journal of Surgical Research. 187 (2), 510-517 (2014).
  18. Hiroshima, Y., et al. Metastatic recurrence in a pancreatic cancer patient derived orthotopic xenograft (PDOX) nude mouse model is inhibited by neoadjuvant chemotherapy in combination with fluorescence-guided surgery with an anti-CA 19-9-conjugated fluorophore. PLoS One. 9 (12), 114310 (2014).
  19. Hiroshima, Y., et al. Fluorescence-guided surgery in combination with UVC irradiation cures metastatic human pancreatic cancer in orthotopic mouse models. PLoS One. 9 (6), 99977 (2014).
  20. Metildi, C. A., et al. Ratiometric activatable cell-penetrating peptides label pancreatic cancer, enabling fluorescence-guided surgery, which reduces metastases and recurrence in orthotopic mouse models. Annals of Surgical Oncology. 22 (6), 2082-2087 (2015).
  21. Metildi, C. A., et al. Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer. Annals of Surgical Oncology. 21 (4), 1405-1411 (2014).
  22. NCCN Guidelines: Pancreatic Adenocarcinoma. National Comprehensive Cancer Network Available from: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (2019)
  23. Maithel, S. K., Allen, P. J., Jarnagin, W. R. . Blumgart’s Surgery of the Liver, Biliary Tract and Pancreas, 2-Volume Set (Sixth Edition). , 1007-1023 (2017).
  24. Egberts, J. H., et al. Dexamethasone reduces tumor recurrence and metastasis after pancreatic tumor resection in SCID mice. Cancer Biology & Therapy. 7 (7), 1044-1050 (2008).
  25. Xu, Z. H., et al. Targeting the HGF/c-MET pathway in advanced pancreatic cancer: a key element of treatment that limits primary tumor growth and eliminates metastasis. British Journal of Cancer. , (2020).
  26. Pothula, S. P., et al. Targeting the HGF/c-MET pathway: stromal remodelling in pancreatic cancer. Oncotarget. 8 (44), 76722-76739 (2017).
  27. Pothula, S. P., et al. Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer. British Journal of Cancer. 114 (3), 269-280 (2016).
  28. Giri, B., et al. An Immunocompetent Model of Pancreatic Cancer Resection and Recurrence. Journal of Gastrointestinal Surgery. , (2020).
  29. Allen, V. B., Gurusamy, K. S., Takwoingi, Y., Kalia, A., Davidson, B. R. Diagnostic accuracy of laparoscopy following computed tomography (CT) scanning for assessing the resectability with curative intent in pancreatic and periampullary cancer. Cochrane Database of Systematic Reviews. (11), 009323 (2013).
  30. Vaillant, F., Lindeman, G. J., Visvader, J. E. Jekyll or Hyde: does Matrigel provide a more or less physiological environment in mammary repopulating assays. Breast Cancer Research. 13 (3), 108 (2011).
  31. Jesnowski, R., et al. Immortalization of pancreatic stellate cells as an in vitro model of pancreatic fibrosis: deactivation is induced by matrigel and N-acetylcysteine. Laboratory Investigation. 85 (10), 1276-1291 (2005).
  32. Phillips, P. A., et al. Cell migration: a novel aspect of pancreatic stellate cell biology. Gut. 52 (5), 677-682 (2003).
  33. Boj, S. F., et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 160 (1-2), 324-338 (2015).
  34. Egberts, J. H., et al. Superiority of extended neoadjuvant chemotherapy with gemcitabine in pancreatic cancer: a comparative analysis in a clinically adapted orthotopic xenotransplantation model in SCID beige mice. Cancer Biology & Therapy. 6 (8), 1227-1232 (2007).
check_url/61726?article_type=t

Play Video

Cite This Article
Pang, T. C. Y., Xu, Z., Mekapogu, A. R., Pothula, S., Becker, T. M., Goldstein, D., Pirola, R. C., Wilson, J. S., Apte, M. V. An Orthotopic Resectional Mouse Model of Pancreatic Cancer. J. Vis. Exp. (163), e61726, doi:10.3791/61726 (2020).

View Video