Summary

Live Animal Imaging and Cell Sorting Methods for Investigating Neurodegeneration in a C. elegans Excitotoxic Necrosis Model

Published: January 22, 2021
doi:

Summary

In a C. elegans excitotoxicity model, this protocol employs in vivo imaging to analyze the regulation of necrotic neurodegeneration, the effect of genes encoding candidate mediators, and involvement of mitochondria. Cell dissociation and sorting is used to specifically obtain at-risk neurons for cell-specific transcriptomic analysis of neurodegeneration and neuroprotection mechanisms.

Abstract

Excitotoxic necrosis is a leading form of neurodegeneration. This process of regulated necrosis is triggered by the synaptic accumulation of the neurotransmitter glutamate, and the excessive stimulation of its postsynaptic receptors. However, information on the subsequent molecular events that culminate in the distinct neuronal swelling morphology of this type of neurodegeneration is lacking. Other aspects, such as changes in specific subcellular compartments, or the basis for the differential cellular vulnerability of distinct neuronal subtypes, remain under-explored. Furthermore, a range of factors that come into play in studies that use in vitro or ex vivo preparations might modify and distort the natural progression of this form of neurodegeneration. It is therefore important to study excitotoxic necrosis in live animals by monitoring the effects of interventions that regulate the extent of neuronal necrosis in the genetically amenable and transparent model system of the nematode Caenorhabditis elegans. This protocol describes methods of studying excitotoxic necrosis in C. elegans neurons, combining optical, genetic, and molecular analysis. To induce excitotoxic conditions in C. elegans, a knockout of a glutamate transporter gene (glt-3) is combined with a neuronal sensitizing genetic background (nuls5 [Pglr-1::GαS(Q227L)]) to produce glutamate receptor hyperstimulation and neurodegeneration. Nomarski differential interference contrast (DIC), fluorescent, and confocal microscopy in live animals are methods used to quantify neurodegeneration, follow subcellular localization of fluorescently labeled proteins, and quantify mitochondrial morphology in the degenerating neurons. Neuronal Fluorescence Activated Cell Sorting (FACS) is used to distinctly sort at-risk neurons for cell-type specific transcriptomic analysis of neurodegeneration. A combination of live imaging and FACS methods as well as the benefits of the C. elegans model organism allow researchers to leverage this system to obtain reproducible data with a large sample size. Insights from these assays could translate to novel targets for therapeutic intervention in neurodegenerative diseases.

Introduction

Excitotoxicity is the leading cause of neuronal death in brain ischemia and a contributing factor in multiple neurodegenerative diseases1,2,3,4,5,6,7,8,9. Disruption of oxygenated blood flow to the brain (e.g., due to a blood clot) results in the malfunction of glutamate transporters, leading to accumulation of glutamate in the synapse. This excess of glutamate over-activates post-synaptic Glutamate Receptors (GluRs) leading to an excessive (catalytic, non-stoichiometric) influx of Ca2+ into neurons (Figure 1A). This detrimental influx leads to progressive postsynaptic neurodegeneration that morphologically and mechanistically ranges from apoptosis to regulated necrosis10,11,12. Although they were based on successful interventions in animal models, multiple clinical trials of GluR antagonists that sought to block Ca2+ entry and promote cell viability have failed in the clinical setting13,14,15,16. A likely critical contributor to these failures is the fact that (in contrast to the animal models) treatment in the clinical setting is administered hours after stroke onset, causing the intervention to block late-acting neuroprotective mechanisms, while failing to interrupt degenerative signaling downstream of GluRs14,16,17. An alternative approach, which is based on thrombolysis, can only be administered within a severely restricted time window, leaving many patients (who suffer stroke at home with poorly identifiable time of onset) unable to benefit from it17. These setbacks emphasize the need to focus excitotoxicity research on the study of events occurring after GluR hyper-stimulation and differentiate subsequent degenerative cascades from concurrent neuroprotective processes. This approach can help prevent cell damage and identify efficient drug targets that can be administered later after damage onset.

One approach to identify subsequent events in excitotoxicity is to study the cell-death signaling mechanisms downstream of GluR hyperstimulation, such as those leading to mitochondrial collapse. Drastic malfunction of mitochondrial physiology and dynamics is a hallmark of neurodegeneration, as seen in excitotoxicity18,19,20. While all cells depend on mitochondrial function and availability for survival, activity, and cellular maintenance, neurons are particularly dependent on mitochondrial energy production to support signal transmission and propagation. Specifically, neurons spend ~50% of their signaling-related energy consumption to restore resting membrane potential following the activation of postsynaptic receptors/channels21, with high dependence on oxygen and glucose. The reduced availability of glucose and oxygen observed in stroke leads to serious mitochondrial alterations, causing further reduction in ATP production19,22,23,24. However, studies to identify the sequence of events that lead to mitochondrial collapse produced controversial results and lacked consensus. Analyzing mitochondrial morphology can help understand these events leading to mitochondrial pathology since it is a good indicator of neuronal health25,26,27,28,29. Filamentous mitochondria are representative of a healthy neuron, whereas fragmented mitochondria reveal substantial neuronal damage that could lead to cell death. Analyzing mitochondrial morphology in live animals under different genetic conditions can help focus on specific genes and pathways involved in mitochondrial-dependent neurodegeneration in excitotoxicity.

Another approach to identifying subsequent events that might regulate the extent of excitotoxic neurodegeneration is to study the transcriptional neuroprotective mechanisms that mitigate some of the effects of excitotoxicity14,16. However, the lack of specificity of key neuroprotective transcription factors and the divergence of experimental setups impede the success of efforts to clearly identify core neuroprotective programs (especially in regulated necrosis).

Therefore, both the study of downstream death signaling pathways and the study of transcriptional neuroprotection in excitotoxicity encountered great difficulties and disagreements on observed outcomes. Much of this controversy is likely to arise from the use of ex vivo or in vitro models of excitotoxicity, and the variability introduced by the specificity of different experimental setups. It is therefore highly beneficial to focus on identifying core mechanisms that are highly conserved, and study them in vivo. The simple model system of the nematode C. elegans offers a particularly effective option, due to the potent combination of particularly powerful and diversified research tools, the conservation of core cell-death pathways, and the rich information on the structure and connectivity of its nervous system30,31,32,33. Indeed, the seminal work of the Driscoll lab on the genetic analysis of necrotic neurodegeneration in mechanosensory neurons is an excellent demonstration of the power of this approach34. Importantly for the analysis of excitotoxicity, the conservation of signaling pathways in the nematode includes all major components of glutamatergic neurotransmission35,36.

The nematode excitotoxicity model builds on these seminal studies, allowing the researcher to study biochemical processes akin to those that occur in stroke and other neurodegenerative diseases affected by glutamate-dependent neurotoxicity. To induce excitotoxic conditions in C. elegans this experimental approach uses an excitotoxicity strain that is the combination of a knockout of a glutamate transporter gene (glt-3) and neuronal sensitizing genetic background (nuls5 [Pglr-1::GαS(Q227L)]) to produce GluR hyperstimulation and neurodegeneration37. This excitotoxicity strain exposes 30 specific (glr-1-expressing) neurons that are postsynaptic to glutamatergic connections to excitotoxic neurodegeneration. Of these 30 at-risk neurons, individual neurons go through necrosis as the animal progresses through development (with mixed stochasticity and partial preference towards certain specific neurons38), while at the same time cell corpses are also being gradually removed. In combination with the accessibility of many mutant strains, this approach allows the study of multiple pathways that affect neurodegeneration and neuroprotection. These approaches have already been used to analyze some of the downstream death signaling cascades39 and transcriptional regulators of excitotoxic neurodegeneration in excitotoxicity38,40. Like other cases of necrotic neurodegeneration in the worm41, the nematode's excitotoxic neurodegeneration does not involve classic apoptosis40.

This methods paper describes the basic system to induce, quantify, and manipulate excitotoxic necrotic neurodegeneration in C. elegans. Furthermore, it outlines two main protocols that are currently in use to streamline studies of specific aspects of nematode excitotoxicity. By using fluorescent reporters and live in vivo imaging the researcher can study mitochondrial involvement and dynamics in the nematode model of excitotoxic neurodegeneration. To determine the effect of specific neuroprotective transcription factors, the investigator can use cell type-specific expression of fluorescent markers, dissociation of animals into single cells, and FACS to isolate specific neurons that are at risk of necrosis from excitotoxicity. These cell-type specific isolated neurons can then be used for RNA sequencing in strains that harbor mutations in key transcription factors. Put together, these methods can allow researchers to tease out the molecular underpinnings of excitotoxic neurodegeneration and neuroprotection in vivo with great clarity and precision.

Protocol

1. Strains used to Investigate Excitotoxic Neurodegeneration & Neuroprotection Use the nematode excitotoxicity strain ZB1102 as the reference point for standard excitotoxic neurodegeneration. NOTE: Glutamate-dependent excitotoxicity in C. elegans is produced in strain ZB1102 by combining a knockout (ko) of a glutamate transporter with a transgene that sensitizes neurons in these animals to neurotoxicity and is expressed in a subset of neurons postsynaptic to glutamatergic connecti…

Representative Results

Nematode model of excitotoxicity and identification of vacuolated degenerating neurons Data shown here is reproduced from previous publications37,38. To mimic excitotoxic-induced neurodegeneration, a glutamate-transporter gene knockout (glt-3) is combined with a neuronal sensitizing transgenic background (nuls5 [Pglr-1::GαS(Q227L);Pglr-1::GFP)]). The transgenic construct is ex…

Discussion

While the prevalent controversies and failures suggest that excitotoxicity presents an exceptionally hard process to decipher, the analysis of excitotoxicity in the nematode offers a particularly attractive strategy to illuminate conserved neuronal cell death pathways in this critical form of neurodegeneration. The investigator can rely on the rich collection of research tools available in this system, and particularly on the animal's transparency (allowing in vivo analysis) and the large repertoire of viable mutants…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank all members of the Mano Lab and the Li lab (current and recent) for their help and support. We thank Dr. Monica Driscoll (Rutgers Univ.) for pioneering the analysis of necrotic neurodegeneration in nematodes and providing continuous support; Dr. Chris Li (CCNY) for support and advice; Jeffery Walker (CCNY Flow Cytometry Core facility), Dr. Bao Voung (CCNY), and Stanka Semova (Rockefeller Univ. Sorting Faculty Core) for practical support and advise on cell sorting; Dr. Chris Rongo (Rutgers Univ.) for reagents; Drs. David Miller (Vanderbilt Univ.), Coleen Murphy (Princeton Univ.), Shai Shaham, Menachem Katz, & Katherine Varandas (all three from Rockefeller Univ.) for C. elegans dissociation protocols.

The Mano lab received funding from NIH NINDS (NS096687, NS098350, NS116028) to I.M., and through a NIH U54 CCNY-MSKCC partnership (CA132378/CA137788).

Materials

Agar VWR AAA10752-0E
Bactopeptone VWR 90000-264
BD FACSAriaIII  BD
Bleach Any household
CaCl2 VWR 97062-586
CaCl2·2H2 BioExpress 0556-500G
Cell Strainer, PluriStrainer mini 70um PluriSelect 43-10070-40
Cell Strainer, PluriStrainer mini 5um PluriSelect 43-10005-60
Centrifuge – 15-50 mL Sorval benchtop  LEGENDX1R TC  Fisher Sci 75618382
Centrifuge – microfuge ; Ependorff 5424 VWR MP022629891
Chloroform VWR 97064-680
Cholesterol Sigma C8667-25G
DAPI Fisher Sci EN62248
Dry ice United City Ice Cube
DTT VWR 97061-340
E. coli OP50 CGC OP50
Ethanol (100%) VWR EM-EX0276-1S
Ethanol (90%) VWR BDH1160-4LP
FACS tubes USA Sci 1450-2810
Filter tips  USA Sci 1126-7810
Glass 10 mL serological pipettes  USA Sci 1071-0810
Heating block  BioExpress D-2250
Hepes  VWR 97061-824
Immersion Oil – Carl Zeiss Immersol Fisher Sci 12-624-66A
Isopropanol VWR EM-PX1830-4
KCl VWR BDH9258-2.5KG
KH2PO4 VWR BDH9268-2.5KG
Low bind 1.5mL tubes USA Sci 4043-1021
Metamorph Imaging Software Molecular Devices
MgCl2 VWR 97063-152
MgCl2·6H2O BioExpress 0288-500g
MgSO4 VWR 97061-438 
Microscope, Confocal, for Fluorescence Imaging Zeiss LSM 880
Microscope, Inverted, for Fluorescence Imaging Zeiss Axiovert 200 M
Microscope  Camera Q-Imaging Retiga R1
Microscope Light Source for Fluorescence Imaging Lumencor SOLA SE Light Engine
Microscope, Nomarski DIC Zeiss Axiovert Observer A1
Microscope, Nomarski DIC Nikon Eclipse Ti-S
Na2HPO4 VWR 97061-588
NaCl VWR BDH9286-2.5KG
NaOH VWR 97064-476
Petri dishes, 100mm Fisher Sci FB0875712
Petri dishes, 60mm TriTech T3308
Pipet Controller TEquipment P2002
Pipettor P10 Tips USA Sci 1110-3000
Pipettor P1000 Tips USA Sci 1111-2020
Pipettor P200 Tips USA Sci 1110-1000
Pronase Sigma P8811-1G
RNAse away spray Fisher Sci 7000TS1
RNAse free serological pipettes USA Sci 1071-0810
RNAse-free 50 mL tubes USA Sci 5622-7261
RNeasy micro Qiagen 74004
SDS VWR 97064-496
Streptomycin sulfate Sigma S6501-100G
Sucrose VWR AAJ63662-AP
SUPERase·in RNase inhibitor Fisher Sci AM2694
Quality Control automated electrophoresis system: Tapestation – High Sensitivity RNA ScreenTape  Agilent 5067-5579 
Tapestation – High Sensitivity RNA ScreenTape Ladder  Agilent 5067-5581 
Tapestation – High Sensitivity RNA ScreenTape Sample Buffer  Agilent 5067-5580
Tapestation – IKA MS3 vortexer Agilent/IKA 4674100
Tapestation – IKA vortexer adaptor at 2000 rpm  Agilent/IKA 3428000
Tapestation – Loading tips  Agilent 5067- 5152 or 5067- 5153
Tapestation – Optical Cap 8x Strip Agilent 401425
Tapestation – Optical Tube 8x Strip Agilent 401428
Quality Control automated electrophoresis system: TapeStation 2200 Agilent G2964AA
Tetramisole Sigma L9756-10G
Tris base Fisher Sci BP152-500
Tris hydrochloride Fisher Sci BP153-500
Trizol-LS Fisher Sci 10296-010
Wescor Vapro 5520 Vapor Pressure Osmometer Fisher Sci NC0044806
Wheaton Unispense μP Dispenser VWR 25485-003

References

  1. Choi, D. W., Rothman, S. M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annual Review of Neuroscience. 13, 171-182 (1990).
  2. Donnan, G. A., Fisher, M., Macleod, M., Davis, S. M. Stroke. The Lancet. 371 (9624), 1612-1623 (2008).
  3. Moskowitz, M. A., Lo, E. H., Iadecola, C. The Science of Stroke: Mechanisms in Search of Treatments. Neuron. 67 (2), 181-198 (2010).
  4. Fisher, M., Saver, J. L. Future directions of acute ischaemic stroke therapy. Lancet Neurology. 14 (7), 758-767 (2015).
  5. Chamorro, A., Dirnagl, U., Urra, X., Planas, A. M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurology. 15 (8), 869-881 (2016).
  6. Baron, J. C. Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nature Reviews Neurology. 14 (6), 325-337 (2018).
  7. GBD Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology. 18 (5), 459-480 (2019).
  8. Kaji, R. Global burden of neurological diseases highlights stroke. Nature Reviews Neurology. 15, 371-372 (2019).
  9. Chen, R. L., Balami, J. S., Esiri, M. M., Chen, L. K., Buchan, A. M. Ischemic stroke in the elderly: an overview of evidence. Nature Reviews Neurology. 6 (5), 256-265 (2010).
  10. Mehta, S. L., Manhas, N., Raghubir, R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Research Reviews. 54 (1), 34-66 (2007).
  11. Galluzzi, L., Kepp, O., Krautwald, S., Kroemer, G., Linkermann, A. Molecular mechanisms of regulated necrosis. Seminars in Cell and Developmental Biology. 35, 24-32 (2014).
  12. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology. 15 (2), 135-147 (2014).
  13. Davis, S. M., et al. Selfotel in Acute Ischemic Stroke : Possible Neurotoxic Effects of an NMDA Antagonist. Stroke. 31 (2), 347-354 (2000).
  14. Ikonomidou, C., Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury. Lancet Neurology. 1 (6), 383-386 (2002).
  15. O’Collins, V. E., et al. 1,026 experimental treatments in acute stroke. Annals of Neurology. 59 (3), 467-477 (2006).
  16. Lai, T. W., Zhang, S., Wang, Y. T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Progress in Neurobiology. 115 (157-188), (2014).
  17. Tymianski, M. Stroke in 2013: Disappointments and advances in acute stroke intervention. Nature Reviews Neurology. 10 (2), 66-68 (2014).
  18. Nicholls, D. G. Mitochondrial calcium function and dysfunction in the central nervous system. Biochimica et Biophysica Acta. 1787 (11), 1416-1424 (2009).
  19. Galluzzi, L., Blomgren, K., Kroemer, G. Mitochondrial membrane permeabilization in neuronal injury. Nature Reviews Neuroscience. 10 (7), 481-494 (2009).
  20. Sharma, N., Pasala, M. S., Prakash, A. Mitochondrial DNA: Epigenetics and environment. Environmental and Molecular Mutagenesis. 60 (8), 668-682 (2019).
  21. Howarth, C., Gleeson, P., Attwell, D. Updated energy budgets for neural computation in the neocortex and cerebellum. Journal of Cerebral Blood Flow & Metabolism. 32 (7), 1222-1232 (2012).
  22. Sims, N. R., Muyderman, H. Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta. 1802 (1), 80-91 (2010).
  23. Dawson, T. M., Dawson, V. L. Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. Annual Review of Pharmacology and Toxicology. 57, 437-454 (2017).
  24. Verma, M., Wills, Z., Chu, C. T. Excitatory Dendritic Mitochondrial Calcium Toxicity: Implications for Parkinson’s and Other Neurodegenerative Diseases. Frontiers in Neuroscience. 12, 523 (2018).
  25. Karbowski, M., Youle, R. J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death & Differentiation. 10 (8), 870-880 (2003).
  26. Knott, A. B., Perkins, G., Schwarzenbacher, R., Bossy-Wetzel, E. Mitochondrial fragmentation in neurodegeneration. Nature Review Neuroscience. 9 (7), 505-518 (2008).
  27. Cho, D. H., Nakamura, T., Lipton, S. A. Mitochondrial dynamics in cell death and neurodegeneration. Cellular and Molecular Life Sciences. 67 (20), 3435-3447 (2010).
  28. Itoh, K., Nakamura, K., Iijima, M., Sesaki, H. Mitochondrial dynamics in neurodegeneration. Trends in Cell Biology. 23 (2), 64-71 (2013).
  29. Picard, M., Shirihai, O. S., Gentil, B. J., Burelle, Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology. 304 (6), 393-406 (2013).
  30. Brenner, S. The genetics of Caenorhabditis elegans. Genetics. 77, 71-94 (1974).
  31. White, J. G., Southgate, E., Thomson, J. N., Brenner, S. The structure of the nervous system of Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences. 314, 1 (1986).
  32. Horvitz, H. R. Worms, Life, and Death (Nobel Lecture). Chembiochem. 4 (8), 697-711 (2003).
  33. Cook, S. J., et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature. 571 (7763), 63-71 (2019).
  34. Driscoll, M., Gerstbrein, B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nature Reviews Genetics. 4 (3), 181-194 (2003).
  35. Mano, I., Straud, S., Driscoll, M. Caenorhabditis elegans Glutamate Transporters Influence Synaptic Function and Behavior at Sites Distant from the Synapse. Journal of Biological Chemistry. 282 (47), 34412-34419 (2007).
  36. Mano, I., Driscoll, M. C. elegans Glutamate Transporter Deletion Induces AMPA-Receptor/Adenylyl Cyclase 9-Dependent Excitotoxicity. J Neurochem Journal of Neurochemistry. 108 (6), 1373-1384 (2009).
  37. Feldmann, K. G., et al. Non-Canonical Activation of CREB Mediates Neuroprotection in a C. elegans Model of Excitotoxic Necrosis. Journal of Neurochemistry. 148 (4), 531-549 (2019).
  38. Del Rosario, J. S., et al. Death Associated Protein Kinase (DAPK) -Mediated Neurodegenerative Mechanisms in Nematode Excitotoxicity. BMC Neuroscience. 16, 25 (2015).
  39. Tehrani, N., Del Rosario, J., Dominguez, M., Kalb, R., Mano, I. The Insulin/IGF Signaling Regulators Cytohesin/GRP-1 and PIP5K/PPK-1 Modulate Susceptibility to Excitotoxicity in C. elegans. PLoS One. 9 (11), 113060 (2014).
  40. Chung, S., Gumienny, T. L., Hengartner, M. O., Driscoll, M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature Cell Biology. 2 (12), 931-937 (2000).
  41. Church, D. L., Guan, K. L., Lambie, E. J. Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development. 121 (8), 2525-2535 (1995).
  42. Berger, A. J., Hart, A. C., Kaplan, J. M. Galphas-induced neurodegeneration in Caenorhabditis elegans. Journal of Neuroscience. 18 (8), 2871-2880 (1998).
  43. Arnold, M. L., Cooper, J., Grant, B. D., Driscoll, M. Quantitative Approaches for Scoring in vivo Neuronal Aggregate and Organelle Extrusion in Large Exopher Vesicles in C. elegans. Journal of Visualized Experiment. , e61368 (2020).
  44. Yemini, E., et al. NeuroPAL: A Neuronal Polychromatic Atlas of Landmarks for Whole-Brain Imaging in C. elegans. bioRxiv. , (2019).
  45. Ghose, P., Park, E. C., Tabakin, A., Salazar-Vasquez, N., Rongo, C. Anoxia-reoxygenation regulates mitochondrial dynamics through the hypoxia response pathway, SKN-1/Nrf, and stomatin-like protein STL-1/SLP-2. PLoS Genetics. 9 (12), 1004063 (2013).
  46. Regmi, S. G., Rolland, S. G., Conradt, B. Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging (Albany NY). 6 (2), 118-130 (2014).
  47. Sarasija, S., Norman, K. R. A gamma-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics. 201 (1453-1466), (2015).
  48. Momma, K., Homma, T., Isaka, R., Sudevan, S., Higashitani, A. Heat-Induced Calcium Leakage Causes Mitochondrial Damage in Caenorhabditis elegans Body-Wall Muscles. Genetics. 206 (4), 1985-1994 (2017).
  49. Moss, B. J., Park, L., Dahlberg, C. L., Juo, P. The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription. PLoS Genetics. 12 (7), 1006180 (2016).
  50. Christensen, M., et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron. 33 (4), 503-514 (2002).
  51. Fox, R. M., et al. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics. 6, 42 (2005).
  52. Spencer, W. C., et al. Isolation of Specific Neurons from C. elegans Larvae for Gene Expression Profiling. PLoS One. 9 (11), 112102 (2014).
  53. Kaletsky, R., et al. Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression. PLoS Genetics. 14 (8), 1007559 (2018).
  54. Katz, M., et al. Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5. Nature Communications. 10 (1), 1882 (2019).
  55. Kaal, E. C., et al. Chronic mitochondrial inhibition induces selective motoneuron death in vitro: a new model for amyotrophic lateral sclerosis. Journal of Neurochemistry. 74 (3), 1158-1165 (2000).
  56. Lewis, J. A., et al. Cholinergic receptor mutants of the nematode Caenorhabditis elegans. Journal of Neuroscience. 7 (10), 3059-3071 (1987).
  57. Zhang, S., Banerjee, D., Kuhn, J. R. Isolation and culture of larval cells from C. elegans. PLoS One. 6 (4), 19505 (2011).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Mendelowitz, Z. Z., Idrizi, A., Mano, I. Live Animal Imaging and Cell Sorting Methods for Investigating Neurodegeneration in a C. elegans Excitotoxic Necrosis Model. J. Vis. Exp. (167), e61958, doi:10.3791/61958 (2021).

View Video