Summary

干预规划和培训的3D打印心血管幻影的开发与评估

Published: January 18, 2021
doi:

Summary

在这里,我们介绍了一个模拟循环设置的开发,用于多式联运治疗评估、介入前规划和心血管解剖学的医生培训。通过应用患者特异性断层扫描,此设置非常适合治疗方法、培训和个性化医学教育。

Abstract

基于导管的干预措施是心血管病理学的标准治疗方案。因此,患者专用模型可以帮助培训医生的线技能,以及改进干预程序的规划。本研究的目的是开发用于心血管干预的患者专用3D打印模型的制造过程。

为了创建一个3D打印弹性幻象,不同的3D打印材料被比较为猪生物组织(即主动脉组织)的机械特性。根据比较拉伸测试选择合适的材料,并定义特定材料厚度。追溯性地收集了匿名对比增强 CT 数据集。从这些数据集中提取了患者特异性体积模型,随后进行了 3D 打印。构建了脉冲流回路,以模拟干预期间的发光血流。模型是否适合临床成像,通过X射线成像、CT、4D-MRI和(多普勒)超声波检查来评估。对比介质用于提高基于 X 射线的成像的可见性。在医生培训以及介入前治疗规划中应用了不同的导管技术来评估 3D 打印幻象。

印刷模型显示打印分辨率高(+30 μm),所选材料的机械性能可与生理生物力学相媲美。与底层放射数据集相比,物理和数字模型的解剖精度较高。打印模型适用于超声波成像和标准 X 射线。多普勒超声波和 4D-MRI 显示与本地数据匹配的流模式和地标特征(即湍流、壁切应力)。在基于导管的实验室环境中,患者特异性幻象很容易导管。有可能对具有挑战性的解剖(例如先天性心脏病)的介入程序进行治疗规划和培训。

灵活的患者特异性心血管幻影是3D打印的,并有可能应用常见的临床成像技术。这一新工艺是理想的导管(电生理)干预训练工具,可用于患者特定的治疗规划。

Introduction

个性化疗法在现代临床实践中越来越重要。从本质上讲,它们可以分为两组:遗传方法和近视方法。对于基于独特个人DNA的个性化疗法,无论是基因组测序还是基因表达水平的量化都是必要的例如,在肿瘤学或代谢紊乱治疗中可以找到这些方法每个人的独特形态学(即解剖学)在介入医学、外科医学和假肢医学中起着重要作用。个性化假肢的发展和介入前/手术前的治疗规划是当今研究小组研究的重点

3D打印来自工业原型生产,是个性化医学领域的理想之选。3D 打印被归类为添加剂制造方法,通常基于材料的逐层沉积。如今,我们拥有多种具有不同打印技术的 3D 打印机,可加工聚合物、生物或金属材料。由于打印速度的提高以及 3D 打印机的持续普及,制造成本正逐渐降低。因此,在日常生活中使用3D打印进行干预前规划在经济上已变得可行

本研究的目的是建立一种产生患者特异性或疾病特异性幻象的方法,用于心血管医学的个性化治疗规划。这些幻象应与常见的成像方法以及不同的治疗方法兼容。另一个目标是使用个性化解剖学作为医生的培训模型。

Protocol

路德维希-马克西米利安大学蒙琴大学伦理委员会审议了道德批准,并放弃了这一批准,因为这项研究中使用的放射性数据集是追溯收集的,并且完全匿名。 请参阅该研究所的 MRI 安全指南,特别是关于流量环的二手 LVAD 心室和金属部件。 1. 数据采集 在创建解剖幻象之前,选择合适的放射数据集,最好是从心血管学科的患者中选择。虚拟 3D 模型可…

Representative Results

所述的代表性结果侧重于规划、培训或测试环境中常用的一些心血管结构。这些数据是使用 ST 为 1.0 mm 和 voxel 大小为 1.0 mm 的同位素 CT 数据集创建的。主动脉瘤模型的壁厚设置为2.5毫米,符合印刷材料的比较拉伸测试结果(拉伸强度:0.62±0.01 N/mm2:最高: 1.55 ± 0.02 N:拉长: 9.01 ± 0.34%) 和猪主动脉样本 (宽度: 1 毫米:最高:1.62 ± 0.83 N:拉?…

Discussion

呈现的工作流程允许建立个性化模型,从而执行介入前治疗规划,以及医生关于个性化解剖学的培训。为此,患者特异性断层数据可用于柔性心血管幻象的分割和 3D 打印。通过在模拟循环中实现这些 3D 打印模型,可以现实地模拟不同的临床情况。

如今,许多治疗规划程序侧重于不同场景的数字模拟,以找出最有利的结果10,11。与…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该出版物得到了德国心脏基金会/德国心脏研究基金会的支持。

Materials

3-matic Materialise AB Software Version 15.0 – Commercial 3D-Modeling Software
Affiniti 50 Philips Medical Systems GmbH Ultrasonic Imaging System
Agilista W3200 Keyence Co. Polyjet 3D-Printer with a spatial resolution of 30µm
AR-G1L Keyence Co. flexible 3D-Printing material
Artis Zee Siemens Healthcare GmbH Angiographic X-ray Scanner
cvi42 CCI Inc. Software Version 5.12 – 4D Flow Analysis Software
Diagnostic Catheter, Multipurpose MPA 2 Cordis, A Cardinal Health company Catheter for pediatric training models, Sizes 4F for infants and 5F for children, young adults
Excor Ventricular Assist Device Berlin Heart GmbH 80 -100ml stroke volume
Imeron 400 Contrast Agent Bracco Imaging CT – Contrast Agent
IntroGuide F Angiokard Medizintechnik GmbH Guidewire with J-tip; diameter: 0.035" length: 220cm
Lunderquist Guidewire Cook Medical Inc. (T)EVAR interventional guidewire
MAGNETOM Aera Siemens Healthcare GmbH MRI Scanner
Magnevist Contrast Agent Bayer Vital GmbH MRI – Contrast Agent
Mimics Materialise AB Software Version 23.0 – Commercial Segmentation Software
Modeling Studio Keyence Co. 3D-Printer Slicing Software
PVC tubing
Radifocus Guide Wire M Terumo Europe NV Straight guidewire; diameter: 0.035" length: 260cm
Really useful box 9L Really useful products Ltd.
Rotigarose – Standard Agar Carl Roth GmbH 3810.4
Solidworks Dassault Systemes SE Software Version 2019-2020; CAD Design Software
SOMATOM Force Siemens Healthcare GmbH Computed Tomography Scanner
syngo via Siemens Healthcare GmbH Radiological Imaging Software

References

  1. Goetz, L. H., Schork, N. J. Personalized medicine: motivation, challenges, and progress. Fertility and Sterility. 109 (6), 952-963 (2018).
  2. Gwin, W. R., Disis, M. L., Ruiz-Garcia, E. Immuno-Oncology in the Era of Personalized Medicine. Advances in Experimental Medicine and Biology. 1168, 117-129 (2019).
  3. Spetzger, U., Frasca, M., König, S. A. Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. European Spine Journal. 25 (7), 2239-2246 (2016).
  4. Gardner, S. J., Kim, J., Chetty, I. J. Modern radiation therapy planning and delivery. Hematology/Oncology Clinics of North America. 33 (6), 947-962 (2019).
  5. Haglin, J. M., et al. Patient-specific orthopaedic implants. Orthopaedic surgery. 8 (4), 417-424 (2016).
  6. Liaw, C. Y., Guvendiren, M. Current and emerging applications of 3D printing in medicine. Biofabrication. 9 (2), 024102 (2017).
  7. Pugliese, L., et al. The clinical use of 3D printing in surgery. Updates in Surgery. 70 (3), 381-388 (2018).
  8. Kamalian, S., Lev, M. H., Gupta, R., Masdeu, J. C., Gonzalez, R. G. . Handbook of Clinical Neurology. , 3-20 (2016).
  9. Bücking, T. M., et al. From medical imaging data to 3D printed anatomical models. PLoS One. 12 (5), 0178540 (2017).
  10. Steinberg, E. L., Segev, E., Drexler, M., Ben-Tov, T., Nimrod, S. Preoperative planning of orthopedic procedures using digitalized software systems. Israel Medical Association Journal. 18 (6), 354-358 (2016).
  11. Hua, J., Aziz, S., Shum, J. W. Virtual surgical planning in oral and maxillofacial surgery. Oral and Maxillofacial Surgery Clinics of North America. 31 (4), 519-530 (2019).
  12. Schmauss, D., Haeberle, S., Hagl, C., Sodian, R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. European Journal of Cardiothoracic Surgery. 47 (6), 1044-1052 (2015).
  13. Smelt, J. L. C., et al. Operative Planning in thoracic surgery: A pilot study comparing imaging techniques and three-dimensional printing. The Annals of Thoracic Surgery. 107 (2), 401-406 (2019).
  14. Masaeli, R., Zandsalimi, K., Rasoulianboroujeni, M., Tayebi, L. Challenges in three-dimensional printing of bone substitutes. Tissue Engineering Part B: Reviews. 25 (5), 387-397 (2019).
  15. Rafiee, M., Farahani, R. D., Therriault, D. Multi-material 3D and 4D printing: A survey. Advanced Science. 7 (12), 1902307 (2020).
  16. Wang, S., et al. Development and testing of an ultrasound-compatible cardiac phantom for interventional procedure simulation using direct three-dimensional printing. 3D Printing and Additive Manufacturing. 7 (6), 269-278 (2020).
  17. D’Souza, W. D., et al. Tissue mimicking materials for a multi-imaging modality prostate phantom. Medical Physics. 28 (4), 688-700 (2001).
  18. Tejo-Otero, A., Buj-Corral, I., Fenollosa-Artés, F. 3D printing in medicine for preoperative surgical planning: A review. Annals of Biomedical Engineering. 48 (2), 536-555 (2020).
  19. Rotman, O. M., et al. Realistic vascular replicator for TAVR procedures. Cardiovascular Engineering and Technology. 9 (3), 339-350 (2018).
  20. Hussein, N., et al. Hands-on surgical simulation in congenital heart surgery: Literature review and future perspective. Seminars in Thoracic and Cardiovascular Surgery. 32 (1), 98-105 (2020).
  21. Fedorov, A., et al. 3D slicer as an image computing platform for the quantitative imaging network. Magnetic resonance imaging. 30 (9), 1323-1341 (2012).
  22. Katsura, M., Sato, J., Akahane, M., Kunimatsu, A., Abe, O. Current and novel techniques for metal artifact reduction at ct: practical guide for radiologists. Radiographics. 38 (2), 450-461 (2018).
  23. Pépin, A., Daouk, J., Bailly, P., Hapdey, S., Meyer, M. E. Management of respiratory motion in PET/computed tomography: the state of the art. Nuclear Medicine Communications. 35 (2), 113-122 (2014).
  24. Scott, A. D., Keegan, J., Firmin, D. N. Motion in cardiovascular MR imaging. Radiology. 250 (2), 331-351 (2009).

Play Video

Cite This Article
Grab, M., Hopfner, C., Gesenhues, A., König, F., Haas, N. A., Hagl, C., Curta, A., Thierfelder, N. Development and Evaluation of 3D-Printed Cardiovascular Phantoms for Interventional Planning and Training. J. Vis. Exp. (167), e62063, doi:10.3791/62063 (2021).

View Video