Summary

用于个人防护装备的聚合物纳米复合纤维的溶液吹丝

Published: March 18, 2021
doi:

Summary

本研究的主要目标是描述一种通过溶液吹丝(SBS)制备具有一致形态的聚合物纤维毡的方案。我们的目标是使用SBS通过在聚合物弹性体基质中加入纳米颗粒来开发用于各种应用的新型,可调谐,柔性聚合物纤维纳米复合材料,包括保护材料。

Abstract

轻型防护装甲系统通常由高模量(>109 MPa)和高强度聚合物纤维组成,用弹性树脂材料(粘合剂)固定到位,形成无纺布单向层压板。虽然在改善高强度纤维的机械性能方面做出了大量努力,但很少有工作来改善粘合剂材料的性能。为了提高这些弹性聚合物粘合剂的性能,使用了一种相对较新且简单的制造工艺,称为溶液吹丝。该技术能够生产平均直径从纳米级到微米级的纤维片或纤维网。为了实现这一目标,在实验室中设计并建造了一种溶液吹丝(SBS)设备,以用聚合物弹性体溶液制造无纺布纤维毡。

本研究采用一种常用的粘结剂材料,即溶解在四氢呋喃中的苯乙烯-丁二烯-苯乙烯嵌段-共聚物,通过添加金属纳米颗粒(NPs),如氧化铁NPs,用硅油封装,从而掺入通过SBS工艺形成的纤维中,生产纳米复合纤维毡。这项工作中描述的方案将讨论SBS过程中涉及的各种关键参数的影响,包括聚合物摩尔质量,热力学适当溶剂的选择,溶液中的聚合物浓度和载气压力,以帮助其他人进行类似的实验,并提供指导优化实验设置的配置。采用扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)对所得无纺布纤维毡的结构完整性和形貌进行了分析.本研究的目的是评估各种实验参数和材料选择对优化SBS纤维毡结构和形貌的影响。

Introduction

目前,许多轻型、弹道、防护装甲系统都是使用高模量和高强度聚合物纤维建造的,例如定向、超高摩尔质量聚乙烯纤维或芳纶,可提供出色的抗弹性12。这些纤维与弹性树脂材料(粘合剂)结合使用,该材料可以渗透到长丝水平并将纤维固定在0°/90°配置中,以形成无纺布单向层压板。聚合物弹性体树脂(粘合剂)的百分比不应超过单向层压板总重量的13%,以保持层压板结构的结构完整性和抗弹性能34。粘合剂是装甲中非常重要的组成部分,因为它使高强度纤维保持正确定向并紧密包装在每个层压板层3内。在防弹衣应用中通常用作粘合剂的弹性体材料具有非常低的拉伸模量(例如,~23°C 时为 ~17.2 MPa)、低玻璃化转变温度(最好低于 -50 °C)、非常高的断裂伸长率(高达 300%),并且必须表现出优异的粘合性能5

为了提高这些聚合物弹性体的性能,SBS用于制造纤维弹性体材料,可用作防弹衣应用中的粘合剂。SBS是一种相对较新的多功能技术,允许使用不同的聚合物/溶剂系统并创建不同的最终产品678910,111213这种简单的过程涉及将保形纤维快速(静电纺丝速率的10倍)沉积到平面和非平面基材上,以制造包含纳米和微长尺度14,15161718的纤维片或网。SBS材料在医疗产品、空气过滤器、防护设备、传感器、光学电子和催化剂141920中有许多应用。开发小直径纤维可以大大增加表面积与体积比,这对于多种应用非常重要,尤其是在个人防护设备领域。SBS产生的纤维的直径和形态取决于聚合物的摩尔质量,溶液中的聚合物浓度,溶液的粘度,聚合物溶液的流速,气体压力,工作距离和喷嘴的直径141517

SBS装置的一个重要特征是由内喷嘴和同心外喷嘴组成的喷嘴。溶解在挥发性溶剂中的聚合物通过内喷嘴泵送,而加压气体流经外喷嘴。从外喷嘴流出的高速气体引起流经内喷嘴的聚合物溶液的剪切。这迫使溶液在离开喷嘴时形成圆锥形。当克服锥体尖端的表面张力时,喷出细小的聚合物溶液流,溶剂迅速蒸发,导致聚合物链聚结并沉积为聚合物纤维。当溶剂蒸发时,纤维结构的形成在很大程度上取决于聚合物摩尔质量和溶液浓度。纤维是通过链缠结形成的,当溶液中的聚合物链开始以称为临界重叠浓度(c*)的浓度重叠时。因此,有必要使用高于所选聚合物/溶剂体系c*的聚合物溶液。此外,实现此目的的简单策略是选择摩尔质量相对较高的聚合物。具有较高摩尔质量的聚合物具有增加的聚合物弛豫时间,这与纤维结构形成的增加直接相关,如文献21中所述。由于SBS中使用的许多参数密切相关,因此这项工作的目标是为开发可调且灵活的聚合物纤维纳米复合材料提供指导,通过在纤维聚合物 – 弹性体基质中加入纳米颗粒,用作防弹衣应用中发现的典型粘合剂材料的替代品。

Protocol

注意:与本节中使用的设备、仪器和化学品有关的详细信息,请参阅 材料表。整个协议应首先由机构安全部门/人员审查和批准,以确保遵守机构特定的程序和流程。 1. 使用适当的溶剂制备聚合物溶液 注意:请咨询制造商/供应商安全数据表和机构的安全部门/人员,了解与每种化学品/材料一起使用的适当个人防护设备 (PPE)。 使用?…

Representative Results

在这项研究中,合成了由纳米和微米尺度的聚(苯乙烯-丁二烯-苯乙烯)纤维组成的无纺布纤维毡,有和没有氧化铁NPs的存在。为了形成纤维,必须根据所使用的聚合物/溶剂系统仔细选择SBS参数。溶解聚合物的摩尔质量和溶液浓度对于控制SBS工艺产生的结构形态至关重要。在本研究中,使用聚(苯乙烯-丁二烯-苯乙烯)嵌段共聚物(苯乙烯 30 wt. %),摩尔质量约为 185,000 g/mol,在 25 °C 下的密度?…

Discussion

本文描述的方法提供了一种通过称为溶液吹丝的相对较新的技术生产聚合物弹性体纳米复合纤维毡的方案。该技术允许在纳米尺度上制造纤维,并且与其他成熟的技术(例如静电纺丝工艺)相比具有几个优点,因为它可以在大气压和室温下进行27。此外,SBS对局部环境变化(温度或湿度)不敏感,不需要刺激性或有毒化学物质,也不需要高电压梯度,这在使用生物系统时是有益?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢Dwight D. Barry先生对溶液吹丝设备的制造做出的重要贡献。Zois Tsinas和Ran Tao分别感谢美国国家标准与技术研究院的资助#70NANB20H007和#70NANB15H112。

Materials

45 MM Toolmaker Vise Tormach Inc. 32547 To secure substrate onto the collector
ARES-G2 Rheometer TA Instruments 401000.501 Rheometer
Branson Ultrasonics M Series – Ultrasonic Cleaning Bath Fisher Scientific 15-336-100 To disperse nanoparticles
Cadence Science Micro-Mate Interchangeable Syringe Fisher Scientific 14-825-2A Glass Syringe 5mL in 1/5mL, Luer Lock Tip
Chemical hood Any company
Corning – Disposable Pasteur Glass Pipette Sigma Aldrich CLS7095D5X-200EA Non-Sterile
DWK Life Sciences Wheaton – Glass Scintillation Vial Fisher Scientific 03-341-25G 20 mL with cap
FEI Quanta 200 Scanning Electron Microscope (SEM) FEI For imaging samples
Iron Oxide Nanopowder/Nanoparticles US Research Nanomaterials, inc. US3320 Fe3O4, 98%, 20-3- nm, Silicon oil Coated
KD Scientific Legato 100 Single-Syringe Pump Sigma Aldrich Z401358-1EA Single syringe infusion pump
Master Airbrush – Model S68 TCP Global MAS S68 Nozzle/needle diameter: 0.35 mm
Mettler Toledo AB265-S/FACT Scale Cole-Parmer Scientific EW-11333-14 For weighing polymer and  Nanoparticles
N2 Gas Regulator Any company
Nanoenclosure Any company
Optical Microscopy Glass Slides Fisher Scientific 12-550-A3 Used as a substrate for fiber mat deposition
OSP Slotted Bob, 33 mm TA Instruments 402796.902 Bob, upper geometry
OSP Slotted Double Gap Cup, 34 mm TA Instruments 402782.901 Double wall cup, lower geometry
Oxford BenchMate Digital Vortex Mixer Pipette VM-D Rated up to 4,200 rpm, for mixing solutions
Oxford Benchmate Tube Roller Pipette OTR-24DR Sample mixer/rotator
Polystyrene-block-polybutadiene-block-polystyrene Sigma Aldrich 432490-1KG styrene 30 wt. %, Mw ~ 185,000 g/mol
SEM Pin Stub Specimen Mount Ted Pella Inc. 16119 18 mm diameter x 8 mm height
Spatula VWR 82027-532 To load test materials
Tetrahydrofuran (THF) Fisher Scientific T425-1 solvent, HPLC grade
TRIOS TA Instruments v4.3.1.39215 Rheometer software

References

  1. Lee, B. L., et al. Penetration failure mechanisms of armor-grade fiber composites under impact. Journal of Composite Materials. 35 (18), 1605-1633 (2001).
  2. Prevorsek, D. C., Kwon, Y. D., Chin, H. B. Analysis of the temperature rise in the projectile and extended chain polyethylene fiber composite armor during ballistic impact and penetration. Polymer Engineering and Science. 34 (2), 141-152 (1994).
  3. Park, A. D., Park, D., No Park, A. J. . U.S. Patent. , (2006).
  4. No Park, A. D. . U.S. Patent. , (1995).
  5. Harpell, G. A., Prevorsek, D. C., Li, H. L. Flexible multi-layered armor. Patent No. WO/1989. , (1989).
  6. Cena, C., et al. BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceramics International. 43 (10), 7663-7667 (2017).
  7. Miller, C. L., Stafford, G., Sigmon, N., Gilmore, J. A. Conductive nonwoven carbon nanotube-PLA composite nanofibers towards wound sensors via solution blow spinning. IEEE Transactions on Nanobioscience. 18 (2), 244-247 (2019).
  8. Iorio, M., et al. Conformational changes on PMMA induced by the presence of TiO 2 nanoparticles and the processing by Solution Blow Spinning. Colloid and Polymer Science. 296 (3), 461-469 (2018).
  9. Martínez-Sanz, M., et al. Antimicrobial poly (lactic acid)-based nanofibres developed by solution blow spinning. Journal of Nanoscience and Nanotechnology. 15 (1), 616-627 (2015).
  10. Wang, H., et al. Highly flexible indium tin oxide nanofiber transparent electrodes by blow spinning. ACS Applied Materials and Interfaces. 8 (48), 32661-32666 (2016).
  11. Greenhalgh, R. D., et al. Hybrid sol-gel inorganic/gelatin porous fibres via solution blow spinning. Journal of Materials Science. 52 (15), 9066-9081 (2017).
  12. Gonzalez-Abrego, M., et al. Mesoporous titania nanofibers by solution blow spinning. Journal of Sol-Gel Science and Technology. 81 (2), 468-474 (2017).
  13. Oliveira, J. E., Zucolotto, V., Mattoso, L. H., Medeiros, E. S. Multi-walled carbon nanotubes and poly (lactic acid) nanocomposite fibrous membranes prepared by solution blow spinning. Journal of Nanoscience and Nanotechnology. 12 (3), 2733-2741 (2012).
  14. Medeiros, E. S., Glenn, G. M., Klamczynski, A. P., Orts, W. J., Mattoso, L. H. Solution blow spinning: A new method to produce micro-and nanofibers from polymer solutions. Journal of Applied Polymer Science. 113 (4), 2322-2330 (2009).
  15. Vasireddi, R., et al. Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Scientific Reports. 9 (1), 1-10 (2019).
  16. Tutak, W., et al. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials. 34 (10), 2389-2398 (2013).
  17. Daristotle, J. L., Behrens, A. M., Sandler, A. D., Kofinas, P. A review of the fundamental principles and applications of solution blow spinning. ACS Applied Materials and Interfaces. 8 (51), 34951-34963 (2016).
  18. Hofmann, E., et al. Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control. Lab on a Chip. 18 (15), 2225-2234 (2018).
  19. Behrens, A. M., et al. In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Letters. 3 (3), 249-254 (2014).
  20. Vural, M., Behrens, A. M., Ayyub, O. B., Ayoub, J. J., Kofinas, P. Sprayable elastic conductors based on block copolymer silver nanoparticle composites. ACS Nano. 9 (1), 336-344 (2015).
  21. Srinivasan, S., Chhatre, S. S., Mabry, J. M., Cohen, R. E., McKinley, G. H. Solution spraying of poly (methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer. 52 (14), 3209-3218 (2011).
  22. Flory, P. J. . Principles of polymer chemistry. , (1953).
  23. Palangetic, L., et al. Dispersity and spinnability: Why highly polydisperse polymer solutions are desirable for electrospinning. Polymer. 55 (19), 4920-4931 (2014).
  24. Ying, Q., Chu, B. Overlap concentration of macromolecules in solution. Macromolecules. 20 (2), 362-366 (1987).
  25. Haro-Pérez, C., Andablo-Reyes, E., Díaz-Leyva, P., Arauz-Lara, J. L. Microrheology of viscoelastic fluids containing light-scattering inclusions. Physical Review E. 75 (4), 041505 (2007).
  26. Thiele, J., et al. Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab on a Chip. 11 (14), 2362-2368 (2011).
  27. Zhao, J., Xiong, W., Yu, N., Yang, X. Continuous jetting of alginate microfiber in atmosphere based on a microfluidic chip. Micromachines. 8 (1), 8 (2017).
  28. Jun, Y., Kang, E., Chae, S., Lee, S. H. Microfluidic spinning of micro-and nano-scale fibers for tissue engineering. Lab on a Chip. 14 (13), 2145-2160 (2014).
  29. Weng, B., Xu, F., Salinas, A., Lozano, K. Mass production of carbon nanotube reinforced poly (methyl methacrylate) nonwoven nanofiber mats. Carbon. 75, 217-226 (2014).
  30. Barton, A. F. Solubility parameters. Chemical Reviews. 75 (6), 731-753 (1975).
check_url/62283?article_type=t

Play Video

Cite This Article
Tsinas, Z., Tao, R., Forster, A. L. Solution Blow Spinning of Polymeric Nano-Composite Fibers for Personal Protective Equipment. J. Vis. Exp. (169), e62283, doi:10.3791/62283 (2021).

View Video