Summary

用于制造反向电透析装置的离子交换膜

Published: July 20, 2021
doi:

Summary

我们演示了使用离子交换膜 (CEM) 和离子交换膜 (AEM) 发电的逆向电透析设备的制造。

Abstract

反向电透析 (RED) 是一种有效的方法,使用离子交换膜 (CEM) 和离子交换膜 (AEM) 将水中的两种不同的盐浓度混合在水中。RED 堆栈由离子交换膜和离子交换膜的交替排列组成。RED 设备是满足未来能源危机普遍需求的潜在候选设备。在这里,在本文中,我们演示了使用实验室规模的 CEM 和 AEM 制造反向电透析设备用于发电的程序。离子交换膜的活性面积为49厘米2。在本文中,我们提供了一个合成膜的分步程序,然后是堆栈的组装和功率测量。还解释了测量条件和净功率输出计算。此外,我们描述了为获得可靠结果而考虑的基本参数。我们还提供一个理论参数,影响与膜和饲料溶液相关的整体细胞性能。简言之,这个实验描述了如何在同一平台上组装和测量红细胞。它还包含使用 CEM 和 AEM 膜估算 RED 堆栈净功率输出的工作原理和计算。

Introduction

从自然资源中获取能源是一种经济的方法,是环保的,从而使我们的星球绿色和清洁。到目前为止,已经提出了几个提取能量的过程,但反向电透析(RED)具有巨大的潜力来克服能源危机问题1。逆向电透析发电是全球能源脱碳的技术突破。顾名思义,RED是一个反向过程,其中备用细胞室充满了高浓度盐溶液和低浓缩盐溶液2。从隔间末端的电极收集的离子交换膜上的盐浓度差产生的化学潜力。

自2000年以来,发表了许多研究文章,从理论和实验上深入了解了红色3、4。对应力条件下的操作条件和可靠性研究进行系统研究,改进了堆栈结构,提高了整体单元格性能。一些研究小组已经将注意力转移到RED的混合应用上,如红与海水淡化工艺5,红色与太阳能6,红色与反渗透(RO)过程5,RED与微生物燃料电池7,红色与辐射冷却过程8。如前所述,在实施RED的混合应用以解决能源和清洁水问题方面有很大的空间。

采用了几种方法来提高红细胞的性能和膜的离子交换能力。使用硫酸组(-SO3H)、磷酸组(-PO3H2)和碳酸组(-COOH)定制不同类型的离子的cation交换膜是改变膜物理化学特性的有效方法之一。离子交换膜是用铵组 Equation 1 ()9量身定做的。AEM 和 CEM 的高离子电导率而不降低膜的机械强度,是选择合适的膜进行设备应用的关键参数。应力条件下的坚固膜为膜提供机械稳定性,并增强设备的耐久性。在这里,高性能独立硫化聚(乙醚醚酮)(sPEEK)作为cation交换膜与FAA-3作为离子交换膜的独特组合用于红色应用。 图1 显示了实验过程的流程图。

Figure 1
图1: 程序图。 流程图介绍了离子交换膜制备的程序,然后是反向电透析测量过程。 请单击此处查看此图的较大版本。

Protocol

1. 实验要求 购买离子交换离子聚合物、E-550 硫化-PEEK 聚合物纤维,以准备 CEM 和 FAA-3 来准备 AEM。使用前,请确保所有离子聚合物都存储在清洁、干燥和无尘环境中。 使用高纯度(>99%)溶剂,包括分子量为99.13克摩尔-1 的N-甲基丙酮和N-二甲基乙酰胺分子量为87.12,用于制备同质离子体溶液。确保所有分析级化学品和溶剂都用于膜制备,无需进一步净化。 膜激活过程?…

Representative Results

净功率输出红细胞通常从盐溶液的盐度梯度产生电能,即离子通过膜朝相反的方向运动。要正确组装红色堆栈,需要对齐堆栈中的所有层,包括电极、垫片、膜和隔膜,如图 4 和图 5中的示意图所示。 如果堆栈不完全对齐,可能会出现两个问题:(i) 堆栈中可能发生 HC 和 LC 解决方案交叉流,堆栈中溶液的 (ii) 泄漏可能发生。在开?…

Discussion

RED 的工作原理主要由膜的物理化学特性主导,这是 RED 系统的重要组成部分, 如图 3所示。在这里,我们描述了膜的基本特征,以提供高性能的红色系统。膜的特异性离子渗透性使其通过聚合物纳米通道传递一种离子。顾名思义,CEM 可以将离子从一侧传递到另一侧并限制离子,而 AEM 可以传递 anion 并限制离子。如图 2所示,所有膜都被塑造成红色堆栈?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了韩国国家研究基金会(NRF)资助的支持,该赠款由韩国政府资助(MEST)( No.NRF-2017R1A2A2A05001329)。手稿的作者感谢大韩民国汉城的索冈大学。

Materials

AEM based membrane Fumion P1810-194 Ionomer
CEM based membrane Fumion E550 Ionomer
Digital torque wrench Torqueworld WP2-030-09000251 wrench
Labview software Natiaonal Instrument Software
Laptop LG PC
Magnetic stirrer Lab Companion MS-17BB
N, N-Dimethylacetamide Sigma aldrich 271012 Chemical
N-Methyl-2- pyrrolidone Daejung 872-50-4 Chemical
Peristaltic pump EMS tech Inc EMP 2000W
Potassium hexacyanoferrate(II) trihydrate Sigma aldrich P3289 Chemical
Potassium hexacyanoferrate(III) Sigma aldrich 244023 Chemical
Pressure Gauge Swagelok Guage
Reverse electrodialysis setup fabricated in lab Device
RO system pure water KOTITI Water
Rotary evaporator Hitachi YEFO-KTPM Induction motor
Sodium Chloride Sigma aldrich S9888 Chemical
Sodium Hydroxide Merk 1310-73-2 Chemical
Source meter Keithley 2410
Spacer Nitex, SEFAR 06-250/34 Spacer
Sulfuric acid Daejung 7664-93-9 Chemical
Tube Masterflex tube 96410-25 Rubber tube

References

  1. Dlugolecki, P., Gambier, A., Nijmeijer, K., Wessling, M. Practical potential of reverse electrodialysis as process for sustainable energy generation. Environmental Science & Technology. 43, 6888-6894 (2009).
  2. Kim, D., Kwon, K., Kim, D. H., Li, L. . Energy Generation Using Reverse Electrodialysis: Principles, Implementation, and Applications. , (2019).
  3. Mei, Y., Tang, C. Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination. 425, 156-174 (2018).
  4. Yip, N. Y., Brogioli, D., Hamelers, H. V. M., Nijmeijer, K. Salinity gradients for sustainable energy: primer, progress, and prospects. Environmental Science & Technology. 50, 12072-12094 (2016).
  5. Li, W., et al. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy. 104, 592-602 (2013).
  6. Brauns, E. Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output. Desalination. 237, 378-391 (2009).
  7. Cusick, R. D., Kim, Y., Logan, B. E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science. 335, 1474-1477 (2012).
  8. Kim, D. H., Park, B. H., Kwon, K., Li, L., Kim, D. Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery. Applied Energy. 189, 201-210 (2017).
  9. Hong, J. G., et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. Journal of Membrane Science. 486, 71-88 (2015).
  10. Choi, S. -. Y., et al. Controlling fuel crossover in open electrochemical cells by tuning the water nanochannel for power generation. ACS Sustainable Chemistry & Engineering. 8, 8613-8623 (2020).
  11. Shah, S. A., et al. Modified single-wall carbon nanotube for reducing fouling in perfluorinated membrane-based reverse electrodialysis. International Journal of Hydrogen Energy. 45, 30703-30719 (2020).
  12. Kwon, K., Han, J., Park, B. H., Shin, Y., Kim, D. Brine recovery using reverse electrodialysis in membrane-based desalination processes. Desalination. 362, 1-10 (2015).
  13. Kwon, K., Park, B. H., Kim, D. H., Kim, D. Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery. Energy Conversion and Management. 103, 104-110 (2015).
  14. Hatzell, M. C., Ivanov, I., Cusick, R. D., Zhu, X., Logan, B. E. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Physical Chemistry Chemical Physics. 16, 1632-1638 (2014).
  15. Zhu, X. P., He, W. H., Logan, B. E. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science. 486, 215-221 (2015).
  16. Vermaas, D. A., Saakes, M., Nijmeijer, K. Doubled power density from salinity gradients at reduced intermembrane distance. Environmental Science & Technology. 45, 7089-7095 (2011).
  17. Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. Journal of Membrane Science. 327, 136-144 (2009).
  18. Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Environmental Science & Technology. 44, 9207-9212 (2010).
  19. Batchelor, C. K., Batchelor, G. K. . An Introduction to Fluid Dynamics. , (2000).
  20. Schock, G., Miquel, A. Mass transfer and pressure loss in spiral wound modules. Desalination. 64, 339-352 (1987).
  21. Da Costa, A. R., Fane, A. G., Wiley, D. E. Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration. Journal of Membrane Science. 87, 79-98 (1994).
  22. Vermaas, D. A., Veerman, J., Saakes, M., Nijmeijer, K. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy & Environmental Science. 7, 1434-1445 (2014).
  23. Vermaas, D. A., Saakes, M., Nijmeijer, K. Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis. Journal of Membrane Science. 453, 312-319 (2014).
  24. Moreno, J., Grasman, S., van Engelen, R., Nijmeijer, K. Upscaling reverse electrodialysis. Environmental Science & Technology. 52, 10856-10863 (2018).
  25. Sarkar, S., SenGupta, A. K., Prakash, P. The donnan membrane principle: opportunities for sustainable engineered processes and materials. Environmental Science & Technology. 44, 1161-1166 (2010).
  26. Kim, H. -. K., et al. High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer. Journal of Materials Chemistry A. 3, 16302-16306 (2015).
  27. Długołęcki, P., Nymeijer, K., Metz, S., Wessling, M. Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science. 319, 214-222 (2008).
  28. Geise, G. M., Curtis, A. J., Hatzell, M. C., Hickner, M. A., Logan, B. E. Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environmental Science & Technology Letters. 1, 36-39 (2014).
check_url/62309?article_type=t

Play Video

Cite This Article
Singh, R., Hong, S. H., Kim, D. Ion-Exchange Membranes for the Fabrication of Reverse Electrodialysis Device. J. Vis. Exp. (173), e62309, doi:10.3791/62309 (2021).

View Video