Summary

烟草基因型对 烟碱性植物 的筛选

Published: April 15, 2022
doi:

Summary

在这里,提出了一种方案,用于有效和准确地筛选幼苗中 烟叶植物 抗性的烟草基因型。这是精密育种以及分子机理研究的实用方法。

Abstract

卵菌黑芋引起的黑柄对烟草具有破坏性,这种病原体对许多茄科作物具有高度致病性。 P. nicotianae 很好地适应高温;因此,由于全球变暖,对这种病原体的研究在全世界的农业中变得越来越重要。耐 尼古丁酸的烟草植物品种通常通过接种由 尼古丁烷定 植的燕麦粒和监测疾病症状来筛查。然而,很难量化接种强度,因为在这种情况下,准确的接种至关重要。本研究旨在开发一种有效且可靠的方法来评估烟草对 烟酸假单胞菌感染的抵抗力。该方法已成功用于鉴定抗性品种,并通过实时荧光定量PCR证实了接种效率。本研究提出的抗性评价方法对于精密育种和分子机理研究具有高效实用性。

Introduction

P. nicotianae 对许多茄科作物具有破坏性。可引起烟草“黑柄”1、马铃薯叶面和块茎腐病2、番茄和甜椒冠腐病和根腐病3、枸杞领和根腐病4烟粉可 攻击烟草植物的所有部位,包括任何生长阶段的根部、茎和叶片5。该疾病最常见的症状是茎的黑色基底。根部最初可见为水浸泡,然后坏死,叶子显示大的圆形病变5。这种疾病可能对温室和田间的烟草植物造成毁灭性打击6。控制 尼古丁酸对虾 最实用、最经济的方法是使用抗性品种7。然而,需要有效的筛查方案来鉴定烟草种质收集中的 耐烟酸假单胞菌种质。

已经描述了各种鉴定方法来评估烟草中的 硝酸对虾 的耐药性78910111213141516。一般而言,已使用三种主要方法鉴定 耐烟化原虫烟草基因型。第一种包括在含有 P. nicotianae 的培养皿上混合菌丝体和琼脂培养基。然后将菌丝体在室温下在黑暗中培养2周。将1L去离子水加入菌丝体中并匀浆30秒。接种物保持在冰上,直到需要。在植物的每一侧做两个孔(直径1厘米,深4-5厘米),并将10毫升的接种物倒入每个孔中。然后用周围的土壤填充孔洞,每天监测疾病发展2周810

在第二种方法中,用病原体感染的牙签接种植物。对于这种方法,植物应在移植后约6周使用,并且最小高度应为30厘米。将高压灭菌的牙签放在含有 P. nicotianae 菌丝体的培养物的表面上。然后将培养皿在室温下在光照下储存7天。然后,使用定植的牙签接种植物。将牙签插入第四和第五节点之间的烟杆中。每天监测植物5天915。此方法不适用于小苗。由于接种物是病原体感染的牙签,因此无法精确控制接种强度。

最常用的方法涉及燕麦粒进行接种。在这种情况下,通过将500mL燕麦和300mL去离子水在121°C下高压灭菌1小时,每天一次,持续3天来制备燕麦谷物。然后,将燕麦粒加入病原体定植培养基中。用石蜡膜密封培养皿,并在25°C的光照下孵育7-12天。在盆栽土壤上形成四个独立的5厘米深的孔,距离每株植物4厘米,每个孔中放置一个病原体感染的燕麦粒。潜伏期根据第一个地上症状发生的时间确定7111213141516。该方法高效,适用于大规模电阻筛选。然而,这种方法的一个局限性是接种物是病原体感染的燕麦粒,因此接种强度无法精确控制。

然而,这里介绍的是一种更准确的方法,适用于生长室阻力评估。与其他方法相比,接种物为游动孢子悬浮液,因此接种强度可控且可调。由于本研究中的烟草植物是在没有土壤的情况下种植的,因此结果更容易观察到。此外,从土壤中取样植物根部总是会对根部造成损害,从而诱发一系列生理反应17。在这种方法中,由于植物在没有土壤的情况下种植,因此可以消除对根系损伤的干扰。综上所述,该方法对于分子机理研究和精密育种更为实用。使用该协议,通常在5天内获得数据,在单个实验中评估200多种植物。

Protocol

1. 材料 获得烟草品种。注:本实验“Beinhart1000-1”(Beinhart 1000)(BH)和“Xiaohuangjin1025”(XHJ)来自中国烟草种质资源国家中期数据库。BH 具有耐药性,而 XHJ 对 尼古丁酸疟原虫 感染敏感16。中国农业科学院烟草研究所保存的 尼古丁酸猪对 偶种0的田间分离物在整个研究过程中用于所有接种。 2. 烟草种植基因型…

Representative Results

使用本文介绍的方法,用 尼古丁酸 对抗性品种BH和易感品种XHJ的4周龄植物进行挑战。该实验设计了三个重复,每个重复每组有8株植物。两种烟草品种BH和XHJ的 尼古丁酸对 虾感染如图 2所示。在接种后3天,对于XHJ,茎病变覆盖了茎围的约一半,并且叶子的一半略微枯萎;在耐药品种BH中,未观察到任何症状。在接种后4天,XHJ发生叶枯萎和严重的茎病变,而这些?…

Discussion

多种耐药性来源已被用于提高栽培烟草中的烟酸对虾的耐药性。单个显性R基因PhpPhl分别从Nicotiana plumbaginifoliaNicotiana longiflora侵入10。雪茄烟草品种Beinhart 1000对P. nicotianae13具有最高的定量抗性水平。多个区间图谱实验表明,至少有六个数量性状位点(QTL)可能有助于该系的抗性13<sup class="xr…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究由国家自然科学基金(31571738)和中国农业科技创新计划(ASTIP-TRIC01)资助。

Materials

(NH4)2SO4 Sinopharm 10002917 Analytical Reagent
(NH4)6 Mo7O24•2 H2O Sinopharm XW131067681 Analytical Reagent
1.5 ml Safe-lock Microcentrifuge Tubes Eppendorf 30120086 Used for Sample Extarction
2 ml Safe-lock Microcentrifuge Tubes Eppendorf 30120094 Used for Sample Extarction
Agar MDBio, Inc 9002-18-0 Materials of Culture Medium
Analytical Balance AOHAOSI AX2202ZH Equipment
Autoclave Yamatuo SQ510C Equipment
Autoclave YAMATUO SQ510C Equipment
Beaker Bio Best DHSB-2L Materials of Culture Medium
Biological Incubator JINGHONG SHP-250 Equipment
Ca(NO3)2•4 H2O Sinopharm 80029062 Analytical Reagent
CaCl2 Sinopharm 10005817 Analytical Reagent
CuSO4•5 H2O Sinopharm 10008218 Analytical Reagent
Electromagnetic Oven Bio Best DHDCL Equipment
FeSO4•7 H2O Sinopharm 10002918 Analytical Reagent
Filter Paper Bio Best DHLZ-9CM Material
Fluorescence Ration PCR Instrument Roche LightCycler96 Equipment
Gauze Bio Best 17071202 Materials of Culture Medium
H3BO3 Phytotechnology B210-500G Analytical Reagent
Hemocytometer Solarbio 17072801 Material for disease-resistant  identification
K2SO4 Sinopharm 10017918 Analytical Reagent
KNO3 Sinopharm 10017218 Analytical Reagent
KT Foam Sheet Bio Best DHKTB Material for Seedling
Low Constant Incubator Jinghong SHP-250 Equipment
Measuring Cylinder Bio Best DHBLLT-1000ML Materials of Culture Medium
MgSO4•7 H2O Sinopharm 10013080 Analytical Reagent
Microscope ECHO RVL-100-G Equipment
MnCl2•4 H2O Sinopharm G5468154 Analytical Reagent
Na2-EDTA Sinopharm G21410-250 Analytical Reagent
NaH2PO4•2 H2O Sinopharm 20040717 Analytical Reagent
NH4NO3 Sinopharm B64586-100g Analytical Reagent
Oatmeal Bio Best DHYMP-1.5KG Materials of Culture Medium
Petri Dish Bio Best DHPYM-9CM Material for disease-resistant  identification
Pipettor THERMO S1 Equipment
Potting Bio Best DHYCXHP-12CM Material for Seedling
Potting Soil Bio Best DHYMJZ-50L Seedling Material
Punch Bio Best DHDKW Material
qRT-PCR Plate Monad MQ50401S qRT-PCR Plate
SYBR Green Premix Pro Taq HS qPCR Kit Accurate Biology AG11718 PCR Reagent
Toothpick Bio Best DHYQ-900 Material
Total RNA Kit II Omega R6934-01 PCR Reagent
TransScript® II One-Step gDNA Removal and cDNA Synthesis SuperMix Transgen AH311-02 PCR Reagent
Trays Bio Best DHYMTP-90G Material for Seedling
Vermiculite Bio Best DHZS Seedling Material
Water Purification System HEAL FORCE HSE68-2 Equipment
ZnSO4•7 H2O Sinopharm 10024018 Analytical Reagent

References

  1. Antonopoulos, D. F., Melton, T., Mila, A. L. Effects of chemical control, cultivar resistance, and structure of cultivar root system on black shank incidence of tobacco. Plant Disease. 94 (5), 613-620 (2010).
  2. Taylor, R. J., Pasche, J. S., Gallup, C. A., Shew, H. D., Gudmestad, N. C. A foliar blight and tuber rot of potato caused by Phytophthora nicotianae: New occurrences and characterization of isolates. Plant Disease. 92 (4), 492-503 (2008).
  3. Amalia, B. R., José, I. M. G., Miguel, D. C. G., Francisco, C. F., Julio, C. T. M. Pathogenicity of plant and soil isolates of Phytophthora parasitica on tomato and pepper. European Journal of Plant Pathology. 148 (3), 607-615 (2017).
  4. Corrado, C., Annamari, M., Leonardo, S., Antonio, I., Simona, M. S. First report of collar and root rot caused by Phytophthora nicotianae on Lycium barbarum. Journal of Plant Pathology. 100 (2), (2018).
  5. Meng, Y. L., Zhang, Q., Ding, W., Shan, W. X. Phytophthora parasitica.: a model oomycete plant pathogen. Mycology. 5 (2), 43-51 (2014).
  6. Biasi, A., Martin, F. N., Cacciola, S. O., Lio, G. M., Grunwald, N. J., Schena, L. Genetic analysis of Phytophthora nicotianae populations from different hosts using microsatellite markers. Phytopathology. 106 (9), 1006-1014 (2016).
  7. Sullivan, M. J., Melton, T. A., Shew, H. D. Fitness of races 0 and 1 of Phytophthora parasitica var. nicotianae. Plant Disease. 89 (11), 1220-1228 (2005).
  8. Carlson, S. R., Wolff, M. A. F., Shew, H. D., Wernsman, E. A. Inheritance of resistance to Race 0 of Phytophthora parasitica var. nicotianae from the flue-cured tobacco cultivar Coker 371-Gold. Plant Disease. 81 (11), 1269-1274 (1997).
  9. Csinos, A. S. Stem and root resistance to tobacco black shank. Plant Disease. 83 (8), 777-780 (1999).
  10. Johnson, E. S., Wolff, M. F., Wernsman, E. A., Atchley, W. R., Shew, H. D. Origin of the black shank resistance gene, Ph, in tobacco cultivar coker 371-Gold. Plant Disease. 86 (10), 1080-1084 (2002).
  11. Osmany, C., Ingrid, H., Roxana, P., Yunior, L., Merardo, P., Orlando, B. H. Identification of defense-related genes in tobacco responding to black shank disease. Plant Science. 177 (3), 175-180 (2009).
  12. Hernández, I., et al. Black shank resistant tobacco by silencing of glutathione S-transferase. Biochemical and Biophysical Research Communications. 387 (2), 300-304 (2009).
  13. Vontimitta, V., Lewis, R. S. Growth chamber evaluation of a tobacco ‘Beinhart 1000’ × ‘Hicks’ mapping population for quantitative trait loci affecting resistance to multiple races of Phytophthora nicotianae. Crop Science. 52 (1), 91-98 (2012).
  14. Xiao, B., et al. Location of genomic regions contributing to Phytophthora nicotianae resistance in tobacco cultivar florida 301. Crop Science. 53 (2), 473-481 (2013).
  15. McCorkle, K., Lewis, R., Shew, D. Resistance to Phytophthora nicotianae in tobacco breeding lines derived from variety Beinhart 1000. Plant Disease. 97 (2), 252-258 (2013).
  16. Zhang, Y., et al. Identification of stably expressed QTL for resistance to black shank disease in tobacco (Nicotiana tabacum L.) line Beinhart 1000-1. The Crop Journal. 6 (3), 282-290 (2018).
  17. Yu, X., Feng, B., He, P., Shan, L. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annual Review of Phytopathology. 55, 109-137 (2017).
  18. Ren, G., et al. . GB/T 23222 Grade and Investigation Method of Tobacco Diseases and Insect Pests. , (2008).
  19. Doyle, J. J., Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 19 (11), 11-15 (1987).
  20. Yan, H. Z., Liou, R. F. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genetics and Biology. 43, 430-438 (2006).
  21. Chacón, O., Hernández, I., Portieles, R., López, Y., Pujol, M., Borrás-Hidalgo, O. Identification of defense-related genes in tobacco responding to black shank disease. Plant Science. 117 (3), 175-180 (2009).
  22. Vijay, V., Ramsey, S. L. Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. Molecular Breeding. 29 (1), 89-98 (2012).
  23. McCorkle, K. L., Drake-Stowe, K., Lewis, R. S., Shew, D. Characterization of Phytophthora nicotianae resistance conferred by the introgressed Nicotiana rustica region, Wz, in flue-cured tobacco. Plant Disease. 102 (2), 309-317 (2018).
  24. Drake, K. E., Moore, J. M., Bertrand, P., Fortnum, B., Peterson, P., Lewis, R. S. Black shank resistance and agronomic performance of flue-cured tobacco lines and hybrids carrying the introgressed Nicotiana rustica Region. Wz. Crop Science. 55 (1), 79-86 (2015).
  25. Kebdani, N., Pieuchot, L., Deleury, E., Panabières, F., Berre, J. -. Y. L., Gourgues, M. Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytologist. 185 (1), 248-257 (2010).
  26. Huang, G., et al. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology. 20 (3), 1-16 (2019).
  27. Agnès, A., Mathieu, G., Nicolas, C. -. T., Harald, K. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytologist. 187 (2), 229 (2010).

Play Video

Cite This Article
Liu, Y., Sun, M., Jiang, Z., Wang, X., Xiao, B., Yang, A., Meng, H., Cheng, L. Screening of Tobacco Genotypes for Phytophthora nicotianae Resistance. J. Vis. Exp. (182), e63054, doi:10.3791/63054 (2022).

View Video