Summary

小鼠原代视网膜色素上皮细胞的分离

Published: November 04, 2022
doi:

Summary

本手稿描述了一种逐步从小鼠眼睛中分离视网膜色素上皮(RPE)细胞的简化方案。该方案包括小鼠眼睛的剜除和解剖,然后是RPE细胞的分离,接种和培养。

Abstract

视网膜色素上皮(RPE)层紧邻光感受器后面,并拥有一个复杂的代谢系统,在维持光感受器的功能中起着几个关键作用。因此,RPE结构和功能对于维持正常视力至关重要。该手稿介绍了原代小鼠RPE细胞分离的既定方案。RPE分离是研究不同眼部疾病小鼠模型中RPE病理学分子机制的好工具。此外,RPE分离可以帮助比较从野生型和转基因小鼠中分离的原代小鼠RPE细胞,以及测试可以加速视觉障碍治疗开发的药物。手稿提出了一个循序渐进的RPE隔离方案;整个过程,从眼球摘除到播种,大约需要4个小时。接种后5-7天内不应更换培养基,以使分离的细胞不受干扰地生长。该过程之后通过免疫荧光 表征 细胞中的形态、色素沉着和特异性标志物。细胞最多可以传代三到四次。

Introduction

视网膜色素上皮(RPE)细胞位于脉络膜和神经视网膜之间,形成位于感光器(PR)细胞后面的简单单层立方体细胞1。RPE在维持PR细胞的健康环境中起着关键作用,主要是通过减少活性氧(ROS)的过度积累和随之而来的氧化损伤1。RPE细胞监督许多功能,例如类视黄醇的转化和储存,散射光的吸收,液体和离子运输以及脱落的PR外段膜23的吞噬作用。RPE(形态/功能)的改变会损害其功能,导致视网膜病变,这是许多眼部疾病的共同特征4。许多眼部疾病与RPE细胞形态和功能的改变有关,包括一些遗传性疾病,如色素性视网膜炎、Leber先天性黑朦和白化病456,以及与年龄相关的眼部疾病,如糖尿病视网膜病变(DR)和年龄相关性黄斑变性(AMD)78.人类细胞是最理想的,因此研究原代人RPE细胞中的RPE疾病以形成RPE单层是理想的。然而,伦理问题和人类供体的可用性有限,因为大多数这些疾病导致发病率9,但不一定导致死亡率10,从而阻止了原代人RPE细胞的分离。这使得培养来自非人类动物供体的RPE细胞成为首选的替代方案。啮齿动物,特别是小鼠,被认为是研究不同眼部疾病的绝佳模型,因为转基因技术在这些物种中得到了更广泛的建立11。尽管使用培养的原代RPE细胞具有许多优点,但很难维持生长的细胞进行多次传代,或者储存和重复使用细胞。该协议的主要限制是小鼠的年龄;用于RPE分离的小鼠应该非常年轻(18-21天大是最佳的),因为很难从成年小鼠111213培养RPE细胞。RPE细胞可以在任何年龄从小鼠眼睛中分离出来,但是多达四次细胞传代仅在年轻小鼠(18-21天大)中成功。使用C57BL6小鼠和在RPE细胞上缺失N-甲基-D-天冬氨酸受体(NMDARs)的转基因小鼠从小鼠视网膜中分离RPE以研究升高的氨基酸同型半胱氨酸对AMD14发育和进展的影响。此外,分离的原代RPE细胞通过抑制RPE细胞的NMDAR来帮助提出AMD的治疗靶点14。有一些NMDAR阻滞剂已获得美国食品和药物管理局(FDA)的批准,目前用于治疗与阿尔茨海默病(AD)相关的中度至重度混乱(痴呆),例如美金刚16,这可能是AMD14的潜在治疗靶点。此外,分离的原代小鼠RPE细胞用于检测炎症标志物,并使用转基因小鼠(CBS)诱导炎症作为同型半胱氨酸诱导的AMD和AD特征的潜在机制,其表现出高水平的同型半胱氨酸1617

该方案用于从我们实验室开发的野生型C57BL / 6小鼠和转基因小鼠中分离RPE细胞,作为其他已发布的分离方案131819的简化改编以达到易于应用和可靠的方案。该协议中没有性别偏好。虽然小鼠年龄对分离过程至关重要,但年轻,年龄的小鼠(18-21天大)和任何年龄(长达12个月)的老年小鼠用于RPE分离。然而,我们注意到从年轻小鼠中分离的RPE细胞寿命更长,最多可以进行四次传代。从老年小鼠中分离的RPE细胞可以传代一次或两次,然后它们将停止以正常速率生长并改变其形状以更细长(成纤维细胞样细胞)。还观察到色素沉着丧失和对组织培养板的粘附降低,随后出现脱落。

Protocol

根据奥克兰大学IACUC动物协议编号21063的指南和ARVO在眼科和视觉研究中使用动物的声明的指南使用动物。 1. 溶液制备 通过补充 Dulbecco 的改良鹰培养基/营养混合物 F-12 (DMEM/F12) 和 25% 胎牛血清 (FBS)、1.5% 青霉素/链霉素和 0.02% 庆大霉素来制备完整的 RPE 细胞培养基。 通过向 741 μL Hank 平衡盐溶液 (HBSS) 补充 127 μL 胶原酶储备溶液和 132 μL 透明?…

Representative Results

验证分离的 RPE 细胞的特异性、纯度和屏障功能/形成在光学显微镜下检查分离的细胞以验证其活力,形态和色素沉着。捕获来自P0和P1的图像(图1A,B)以及来自P0和P4的图像(图1C,D)以显示细胞的变化;当传代进行到第四代时,形状,大小和色素沉着(黑色箭头指向P4中分离的RPE细胞)。RPE65蛋白的抗体用于验证分离细胞的?…

Discussion

当前协议是从小鼠眼睛中分离RPE的报告,修改和简化的详细程序。该协议包括从小鼠眼睛分离的RPE细胞的剜除,解剖,收集,接种,培养和表征。

成功进行RPE分离必须满足一些限制和关键步骤,例如小鼠年龄,解剖的眼睛数量,组织培养板或培养皿的大小以及接种,储存和传代后的注意事项。为了能够传代分离的细胞多达三到四次,最好的小鼠年龄在18-21天之间。为了获得合…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家眼科研究所(NEI),国家眼科研究所(NEI)基金R01 EY029751-04的支持。

Materials

Beaker : 100mL KIMAX 14000
Collagenase from Clostridium histolyticum  Sigma-Aldrich C7657-25MG For working enzyme, A
Disposable Graduated Transfer Pipettes :3.2mL Sterile 13-711-20
DMEM/F12  gibco  11330 Media to grow RPE cells 
Fetal Bovine Serum (FBS) gibco 26140079 For complete RPE cell culture media
Gentamicin Reagent Solution gibco 15750-060 For complete RPE cell culture media
Hanks' Balanced Salt Solution (HBSS) Thermo Scientific 88284 For working enzymes (A&B) 
Heracell VISO 160i CO2 Incubator Thermo Scientific 50144906
Hyaluronidase from bovine testes Sigma-Aldrich H3506-500MG For working enzyme A
Kimwipes Kimberly-Clark 34155
Luer-Lok Syringe with attached needle 21 G x 1 1/2 in., sterile, single use, 3 mL B-D 309577
Micro Centrifuge Tube: 2 mL Grainger 11L819
Mouse monoclonal anti-RPE65 antibody  Abcam, Cambridge, MA, USA ab78036 For IF staining 
Pen Strep gibco 15140-122 For complete RPE cell culture media
Positive Action Tweezers, Style 5/45 Dumont 72703-DZ
Scissors Iris Standard Straight 11.5cm GARANA INDUSTRIES 2595
Sorvall St8 Centrifuge ThermoScientific 75007200
Stemi 305 Microscope Zeiss n/a
Surgical Blade, #11, Stainless Steel Bard-Parker 371211
Suspension Culture Dish 60mm x 15mm Style Corning 430589
Tissue Culture Dish : 100x20mm style Corning 353003
Tornado Tubes: 15mL Midsci C15B
Tornado Tubes: 50mL Midsci C50R
Trypsin EDTA (1x) 0.25% gibco 2186962 For working enzyme B
Tweezers 5MS, 8.2cm, Straight, 0.09×0.05mm Tips Dumont 501764
Tweezers Positive Action Style 5, Biological, Dumostar, Polished Finish, 110 mm OAL Electron Microscopy Sciences Dumont 50-241-57
Underpads, Moderate : 23" X 36" McKesson 4033
Vannas Spring Scissors – 2.5mm Cutting Edge FST 15000-08
Zeiss AxioImager Z2 Zeiss n/a
Zeiss Zen Blue 2.6 Zeiss n/a

References

  1. Young, R. W., Droz, B. The renewal of protein in retinal rods and cones. The Journal of Cell Biology. 39 (1), 169-184 (1968).
  2. Sparrow, J. R., Hicks, D., Hamel, C. P. The retinal pigment epithelium in health and disease. Current Molecular Medicine. 10 (9), 802-823 (2010).
  3. Strauss, O. The retinal pigment epithelium in visual function. Physiological Reviews. 85 (3), 845-881 (2005).
  4. Marlhens, F., et al. Autosomal recessive retinal dystrophy associated with two novel mutations in the RPE65 gene. European Journal of Human Genetics. 6 (5), 527-531 (1998).
  5. Morimura, H., et al. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proceedings of the National Academy of Sciences. 95 (6), 3088-3093 (1998).
  6. Weiter, J. J., Delori, F. C., Wing, G. L., Fitch, K. A. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Investigative Ophthalmology & Visual Science. 27 (2), 145-152 (1986).
  7. Feeney-Burns, L., Hilderbrand, E. S., Eldridge, S. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Investigative Ophthalmology & Visual Science. 25 (2), 195-200 (1984).
  8. Ibrahim, A. S., et al. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget. 7 (8), 8532-8545 (2016).
  9. Zarbin, M. A. Age-related macular degeneration: review of pathogenesis. European Journal of Ophthalmology. 8 (4), 199-206 (1998).
  10. Dunn, K. C., Aotaki-Keen, A. E., Putkey, F. R., Hjelmeland, L. M. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Experimental Eye Research. 62 (2), 155-170 (1996).
  11. Flannery, J. G. Transgenic animal models for the study of inherited retinal dystrophies. ILAR Journal. 40 (2), 51-58 (1999).
  12. Gibbs, D., Williams, D. S. Isolation and culture of primary mouse retinal pigmented epithelial cells. Advances in Experimental Medicine and Biology. 533, 347-352 (2003).
  13. Fernandez-Godino, R., Garland, D. L., Pierce, E. A. Isolation, culture, and characterization of primary mouse RPE cells. Nature Protocols. 11 (7), 1206-1218 (2016).
  14. Samra, Y. A., et al. Implication of N-Methyl-d-Aspartate receptor in homocysteine-induced age-related macular degeneration. International Journal of Molecular Sciences. 22 (17), 9356 (2021).
  15. van Marum, R. J. Update on the use of memantine in Alzheimer’s disease. Neuropsychiatric Disease and Treatment. 5, 237-247 (2009).
  16. Elsherbiny, N. M., et al. Homocysteine induces inflammation in retina and brain. Biomolecules. 10 (3), 393 (2020).
  17. Tawfik, A., Elsherbiny, N. M., Zaidi, Y., Rajpurohit, P. Homocysteine and age-related central nervous system diseases: role of inflammation. International Journal of Molecular Sciences. 22 (12), 6259 (2021).
  18. Shang, P., Stepicheva, N. A., Hose, S., Zigler Jr, J. S., Sinha, D. Primary cell cultures from the mouse retinal pigment epithelium. Journal of Visualized Experiments. (133), e56997 (2018).
  19. Chen, M., et al. Characterization of a spontaneous mouse retinal pigment epithelial cell line B6-RPE07. Investigative Ophthalmology & Visual Science. 49 (8), 3699-3706 (2008).
  20. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Available from: https://www.avma.org/KB/Policies/Documents/euthanasia.pdf (2020)
  21. Cai, X., Conley, S. M., Naash, M. I. RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genetics. 30 (2), 57-62 (2009).
  22. Pérez-Álvarez, M. J., et al. Vimentin isoform expression in the human retina characterized with the monoclonal antibody 3CB2. Journal of Neuroscience Research. 86 (8), 1871-1883 (2008).
  23. Tawfik, A., Samra, Y. A., Elsherbiny, N. M., Al-Shabrawey, M. Implication of hyperhomocysteinemia in blood retinal barrier (BRB) dysfunction. Biomolecules. 10 (8), 1119 (2020).
  24. Promsote, W., Makala, L., Li, B., Smith, S. B., Singh, N., Ganapathy, V., Pace, B. S., Martin, P. Monomethylfumarate induces γ-globin expression and fetal hemoglobin production in cultured human retinal pigment epithelial (RPE) and erythroid cells, and in intact retina. Invest Ophthalmol Vis Sci. 55 (8), 5382-5393 (2014).
check_url/63543?article_type=t

Play Video

Cite This Article
Tomaszewski, R., Rajpurohit, P., Cheng, M., Tawfik, A. Isolation of Primary Mouse Retinal Pigmented Epithelium Cells. J. Vis. Exp. (189), e63543, doi:10.3791/63543 (2022).

View Video