Summary

用于表征成人型弥漫性浸润性胶质瘤微环境的数字空间剖析

Published: September 13, 2022
doi:

Summary

蛋白质组学失调在弥漫性浸润性胶质瘤的扩散中起重要作用,但几种相关蛋白质仍未鉴定。数字空间处理(DSP)提供了一种高效、高通量的方法,用于表征可能导致浸润性胶质瘤侵袭和迁移的候选蛋白的差异表达。

Abstract

弥漫性浸润性胶质瘤由于肿瘤扩散的浸润性而与高发病率和死亡率相关。它们是形态复杂的肿瘤,在肿瘤本身及其异质微环境中具有高度的蛋白质组学变异性。这些肿瘤的恶性潜力通过参与几个关键途径的蛋白质失调而增强,包括维持细胞稳定性和保持微环境结构完整性的过程。尽管已经进行了大量和单细胞胶质瘤分析,但这些蛋白质组学数据的空间分层相对缺乏。了解内在肿瘤、侵袭边缘和微环境之间致瘤因子和免疫细胞群的空间分布差异,为肿瘤增殖和增殖的机制提供了有价值的见解。数字空间剖析 (DSP) 代表了一种强大的技术,可以为这些重要的多层分析奠定基础。

DSP是一种有效定量组织标本中用户指定空间区域内蛋白质表达的方法。DSP是研究区分区域内和跨区分区域多种蛋白质差异表达的理想选择,可实现多层次的定量和定性分析。DSP协议是系统且用户友好的,允许对蛋白质组学数据进行定制的空间分析。在该实验中,组织微阵列由存档的胶质母细胞瘤核心活检构建。接下来,选择一组抗体,靶向样品中感兴趣的蛋白质。然后将预偶联到紫外光切割DNA寡核苷酸的抗体与组织样品一起孵育过夜。在抗体的荧光显微镜可视化下,用样品定义用于定量蛋白质表达的感兴趣区域(ROI)。然后将紫外线照射到每个ROI,切割DNA寡核苷酸。微吸寡核苷酸在每个ROI内计数,在空间基础上量化相应的蛋白质。

Introduction

弥漫性浸润性胶质瘤是成人中最常见的恶性脑肿瘤类型,并且总是致命的。神经胶质瘤细胞在大脑中广泛迁移的倾向是一个主要的治疗挑战。它们的传播机制包括定向迁移和不受控制的入侵。浸润性胶质瘤细胞已被证明沿白质束1 表现出嗜性和迁移性,最近的研究表明这些束脱髓鞘是一种活跃的促肿瘤特征2。侵袭由上皮到间充质转化介导,其中胶质瘤细胞通过减少编码细胞外基质蛋白和细胞粘附分子的基因的表达来获得间充质特性,放大迁移并促进通过肿瘤微环境的繁殖345

在分子水平上,已经证明了几种赋予细胞稳定性并与免疫原性成分界面的蛋白质的破坏6。已知浸润性胶质瘤会抑制具有抗凋亡(例如PTEN)特性的蛋白质7。它们还过表达促进逃避宿主免疫反应的蛋白质(例如,PD1/PDL1)8。这些复杂途径的失调增强了致瘤性并增加了恶性潜力。

在侵袭性胶质瘤样本中,目的是评估对细胞生长、存活和增殖以及侵袭性和非侵入性成分之间的微环境结构完整性至关重要的蛋白质的差异表达。此外,我们试图研究具有活性免疫原性作用的蛋白质的差异调节,从而深入了解受损的宿主免疫防御可能增强胶质瘤的增殖和侵袭潜力的机制。鉴于最近广泛的研究表明,恶性肿瘤中的免疫标志物和失调的驱动因素如何成为免疫治疗的靶标,这一点尤其重要。在参与免疫监视和反应性的众多蛋白质中确定可行的治疗靶点需要一种高度灵敏和全面的方法。

鉴于可以研究的候选蛋白质种类繁多,我们寻求一种类似于免疫组织化学但具有增强数据处理效率的方法。在癌症生物学领域,DSP已成为一项强大的技术,与蛋白质组学分析和定量的替代工具相比具有重要优势。DSP的特点是其高通量多重检测能力,允许同时研究样品中的几种不同蛋白质,这标志着与免疫组织化学(IHC)等标准但低重技术的重要区别910。DSP的多重功能不会影响其作为定量和分析工具的保真度,正如比较DSP与IHC的研究所证明的那样。例如,当用于非小细胞肺癌标本的蛋白质组学定量时,DSP已被证明具有与IHC11相似的结果。此外,DSP还提供可定制的区域规范,用户可以在其中手动定义要执行蛋白质组学分析的区域。这比全断面多重方法1012具有优势。因此,在单轮处理中,DSP通过调查多个感兴趣区域的多个蛋白质靶标来提供多层分析。

DSP在几种不同的病理环境中都有应用。DSP在肿瘤学分析中特别有利,因为空间变化可以与细胞转化和差异蛋白表达相关。例如,DSP已被用于将乳腺癌的蛋白质组学特征与邻近的肿瘤微环境进行比较。这对于了解该肿瘤的自然史及其进展以及对治疗的潜在反应具有重要意义13。说明DSP多功能性的其他背景包括前列腺癌中蛋白质多样性的空间定量14,免疫细胞标志物表达与头颈部鳞状细胞癌疾病进展的关联15,以及蛋白质表达的上皮 – 间充质梯度的证明,以区分转移性和原发性透明细胞卵巢癌16.通过实施DSP,我们表征了可能影响胶质瘤肿瘤发生和侵袭的蛋白质的空间地形。

Protocol

下面概述的协议遵循达特茅斯 – 希区柯克人类研究伦理委员会的指导方针。从本研究中包括组织样本的患者获得知情同意。有关此协议中使用的所有材料、试剂、设备和软件的详细信息,请参阅 材料表 部分。 1. 载玻片准备17 从人成人型弥漫性浸润性胶质瘤中检索或制备福尔马林固定的石蜡包埋组织。注意:在该实验中,…

Representative Results

图4 显示了对胶质母细胞瘤样本进行的DSP实验的代表性结果。展示了一个热图,说明了使用DSP软件直观地捕获数据的方法之一。行代表蛋白质靶标,每列对应于一个感兴趣区域。蓝色到红色的颜色范围分别表示低到高表达。行内颜色的变异性反映了区域蛋白质的异质性,并表明可能与差异蛋白质表达的空间关联。例如,在本实验中,S100和CD56普遍较高,因为它们是神经标记。…

Discussion

鉴于可能影响胶质瘤侵袭性的蛋白质的多样性,以及其中一些蛋白质仍未被发现的概念,高通量蛋白质定量方法是一种理想的技术方法。此外,鉴于肿瘤样品中的空间数据通常与差异表达相关18,将空间分析纳入蛋白质定量方法可以实现更有效的分析。

DSP的高通量方法还使其能够用于类似霰弹枪的方法,这是发现疾病和治疗反应的潜在新型生物标志物的理想…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢达特茅斯希区柯克卫生系统病理学和实验室医学系临床基因组学和先进技术实验室的支持。作者还承认达特茅斯癌症中心的病理学共享资源与NCI癌症中心支持补助金5P30 CA023108-37。

Materials

BOND Research Detection System Leica Biosystems, Wetzlar, Germany DS9455 Open detection system containing open containers in a reagent tray
BOND Wash Leica Biosystems, Wetzlar, Germany AR950 10X concentrated buffer solution for washing fixed tissue
Buffer W NanoString, Seattle, WA contact company Blocking reagent
Cy3 conjugation kit Abcam, Cambridge, UK AB188287 Cy3 fluorescent antibody conjugation kit
GeoMx Digital Spatial Profiler (DSP) NanoString, Seattle, WA contact company System for imaging and characterizing protein and RNA targets
GeoMx DSP Instrument BufferKit NanoString, Seattle, WA 100471 Buffer kit for GeoMX DSP (including buffers for sample processing and preparation)
GeoMx Hyb Code Pack_Protein NanoString, Seattle, WA 121300401 Controls for running GeoMX DSP experiemtns
GeoMx Immune Cell Panel (Imm Cell Pro_Hs) NanoString, Seattle, WA 121300101 Protein module with targets for human immune cells and immuno-oncologic targets
GeoMx Pan-Tumor Panel (Pan-Tumor_Hs) NanoString, Seattle, WA 121300105 Protein module with targets for multiple human tumor types and for markers of epithelial-mesenchymal transition
GeoMx Protein Slide Prep FFPE NanoString, Seattle, WA 121300308 Sample preparation reagents for GeoMX DSP protein analysis
IDH1-R132H antibody Dianova, Hamburg, Germany DIA-H09 Monoclonal antibody against human IDH1 R132H
LEICA Bond RX Leica Biosystems, Wetzlar, Germany contact company Fully automated IHC stainer
Master Kit–12 reactions NanoString, Seattle, WA 100052 Materials and reagents for use with the nCounter Analysis system
nCounter Analysis System NanoString, Seattle, WA contact company Automated system for multiplex target expression quantification (to be used with GeoMx DSP)
TMA Master II 3DHistech Ltd., Budapest, Hungary To create the tissue microarray block

References

  1. Pedersen, P. H., et al. Migratory patterns of lac-z transfected human glioma cells in the rat brain. International Journal of Cancer. 62 (6), 767-771 (1995).
  2. Wang, J., et al. Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nature Neuroscience. 22 (1), 91-105 (2019).
  3. Iwadate, Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncology Letters. 11 (3), 1615-1620 (2016).
  4. Tao, C., et al. Genomics and prognosis analysis of epithelial-mesenchymal transition in glioma. Frontiers in Oncology. 10, 183 (2020).
  5. Cuddapah, V. A., Robel, S., Watkins, S., Sontheimer, H. A neurocentric perspective on glioma invasion. Nature Reviews Neuroscience. 15 (7), 455-465 (2014).
  6. Barthel, L., et al. Glioma: molecular signature and crossroads with tumor microenvironment. Cancer and Metastasis Reviews. 1 (1), 53-75 (2021).
  7. Ziegler, D. S., Kung, A. L., Kieran, M. W. Anti-apoptosis mechanisms in malignant gliomas. Journal of Clinical Oncology. 26 (3), 493-500 (2008).
  8. Berghoff, A. S., et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-Oncology. 17 (8), 1064-1075 (2015).
  9. Merritt, C. R., et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nature Biotechnology. 38 (5), 586-599 (2020).
  10. Van, T. M., Blank, C. U. A user’s perspective on GeoMxTM digital spatial profiling. Immuno-Oncology Technology. 1, 11-18 (2019).
  11. Garcia-Pardo, M., Calles, A. ROS-1 NSCLC therapy resistance mechanism. Precision Cancer Medicine. , (2021).
  12. Ye, L., et al. Digital spatial profiling of individual glomeruli from patients with anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis. Frontiers in Immunology. 13, 831253 (2022).
  13. Bergholtz, H., et al. Best practices for spatial profiling for breast cancer research with the GeoMx digital spatial profiler. Cancers. 13 (17), 4456 (2021).
  14. Brady, L., et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nature Communications. 12 (1), 1426 (2021).
  15. Kulasinghe, A., et al. Highly multiplexed digital spatial profiling of the tumor microenvironment of head and neck squamous cell carcinoma patients. Frontiers in Oncology. 10, 607349 (2021).
  16. Wang, D. Y. -. T., et al. Case study: Digital spatial profiling of metastatic clear cell carcinoma reveals intra-tumor heterogeneity in epithelial-mesenchymal gradient. bioRxiv. , (2021).
  17. GeoMx DSP. Automated slide preparation user manual. GeoMx DSP. , (2022).
  18. Allam, M., Cai, S., Coskun, A. F. Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ Precision Oncology. 4, 11 (2020).
  19. Wolchok, J. D., et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. New England Journal of Medicine. 377 (14), 1345-1356 (2017).
  20. Blank, C. U., et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nature Medicine. 24 (11), 1655-1661 (2018).
  21. Matthews, R. T., et al. Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. Journal of Biological Chemistry. 275 (30), 22695-22703 (2000).
  22. Paganetti, P. A., Caroni, P., Schwab, M. E. Glioblastoma infiltration into central nervous system tissue in vitro: involvement of a metalloprotease. Journal of Cell Biology. 107, 2281-2291 (1988).
  23. Beliën, A. T., Paganetti, P. A., Schwab, M. E. Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. Journal of Cell Biology. 144 (2), 373-384 (1999).
  24. Coulie, P. G., Vanden Eynde, B. J., vander Bruggen, P., Boon, T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nature Reviews Cancer. 14 (2), 135-146 (2014).
  25. Finn, O. J. Vaccines for cancer prevention: a practical and feasible approach to the cancer epidemic. Cancer Immunology Research. 2 (8), 708-713 (2014).
  26. Sharma, P., Allison, J. P. The future of immune checkpoint therapy. Science. 348 (6230), 56-61 (2015).
  27. Chen, L., Han, X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. Journal of Clinical Investigation. 125 (9), 3384-3391 (2015).
  28. Cai, X., et al. Glioma-Associated stromal cells stimulate glioma malignancy by regulating the tumor immune microenvironment. Frontiers in Oncology. 11, 672928 (2021).
  29. Ishii, , et al. Histological characterization of the tumorigenic "peri-necrotic niche" harboring quiescent stem-like tumor cells in glioblastoma. PLoS One. 11 (1), 0147366 (2016).
  30. Lewis, C. E., Pollard, J. W. Distinct role of macrophages in different tumor microenvironments. Cancer Research. 66 (2), 605-612 (2006).
  31. NanoString. CosMx Spatial Molecular Imager: True Single-Cell In Situ Solution. NanoString. , (2022).
check_url/63620?article_type=t

Play Video

Cite This Article
Karbhari, N., Barney, R., Palisoul, S., Hong, J., Lin, C., Zanazzi, G. Digital Spatial Profiling for Characterization of the Microenvironment in Adult-Type Diffusely Infiltrating Glioma. J. Vis. Exp. (187), e63620, doi:10.3791/63620 (2022).

View Video