Summary

混合现实在定制翻修髋关节置换术中的应用:第一份病例报告

Published: August 04, 2022
doi:

Summary

使用定制的植入物和混合现实技术进行了复杂的翻修髋关节置换术。据提交人所知,这是文献中描述的关于这种程序的第一次报告。

Abstract

3D打印和解剖结构可视化技术在医学的各个领域正在迅速发展。2019 年 1 月,使用定制的植入物和混合现实进行复杂的翻修髋关节置换术。混合现实的使用可以很好地可视化结构,并导致精确的植入物固定。据作者所知,这是首次描述这两种创新相结合的案例报告。手术资格之前的诊断是左髋臼部分松动。手术期间使用了工程师准备的混合现实耳机和全息图。手术很成功,随后是早期垂直化和患者康复。该团队看到了关节置换术、创伤和骨科肿瘤学的技术发展机会。

Introduction

三维(3D)打印和复杂结构可视化技术在医学的各个领域正在迅速发展。这些包括心血管外科、耳鼻喉科、颌面外科,最重要的是骨科手术12345目前,该技术不仅用于骨科手术的直接实现3D打印元件,还用于外科培训,术前计划或术中导航678

全髋关节置换术(THA)和全膝关节置换术(TKA)是全球最常进行的骨科外科手术之一。由于患者生活质量的显着改善,THA在之前的出版物中被描述为“世纪手术”9。在波兰,49.937 THA 和 30.615 TKA 在 2019 年进行了10.随着预期寿命的增加,预计髋关节和膝关节置换术的数量呈上升趋势。在改进植入物设计、手术技术和术后护理方面做出了巨大努力。这些进展使患者恢复功能并降低并发症风险的机会更大11121314

然而,全球整形外科医生目前面临的巨大挑战是处理非标准患者,这些患者的髋关节解剖学缺陷使得实施现成的植入物变得非常困难甚至不可能15。骨质流失可能是由于严重创伤、伴髋臼突出的进行性退行性骨关节炎、发育性髋关节发育不良、原发性骨癌或转移1617,181920植入物选择的问题特别涉及有多次翻修风险的患者,有时还需要非常规治疗。在这种情况下,一个非常有前途的解决方案是为特定患者和骨骼缺陷创建的添加剂制造的3D打印植入物,从而实现非常精确的解剖配合20

在关节置换术领域,精确的植入物及其可持续固定至关重要。术前和术中 3D 可视化的进展产生了出色的解决方案,如增强现实和混合现实21222324术中使用骨和植入物计算机断层扫描 (CT) 全息图可能比传统的放射成像图像更好地放置假体。这项新兴技术可能会增加治疗效果的机会并降低神经血管并发症的风险2125

本病例报告涉及一名因无菌松动而接受髋关节翻修手术的患者。为了解决由多次植入失败引起的严重骨质流失,使用了定制的3D打印髋臼植入物。在手术过程中,我们使用混合现实来可视化植入物的位置,以避免损坏有风险的神经血管结构。实现到混合现实头戴显示设备的应用程序允许发出语音和手势命令,从而可以在外科手术过程中在无菌条件下使用它。

一名57岁的女性因初步诊断入院:左髋臼部分松动。患者的病史广泛。在她的一生中,她经历了许多髋关节的外科手术。第一种治疗方法是由于髋关节发育不良引起的骨关节炎引起的髋关节表面置换术(1977-15岁),第二种是由于植入物松动引起的全髋关节置换术(1983-21岁),以及其他两次翻修手术(1998年,2000-37岁和39岁)。而且,患者患有儿童脑瘫引起的痉挛性左侧偏瘫,因左马蹄内翻足畸形反复手术。她还患有胸腰椎骨关节炎、腕管综合征和控制良好的动脉高血压。在进行下一次手术资格之前,最终诊断是左髋臼部分松动引起的疼痛和功能限制增加。患者积极性高,身体活跃,能够应对残疾。

Protocol

该协议遵循华沙医科大学人类研究伦理委员会的指导方针。患者对该程序表示知情同意,并承认将被记录的事实。患者在手术前同意了。 注意:将患者纳入手术项目的基本标准是必须进行干预,因为解剖功能障碍使得无法使用标准植入物。混合现实旨在更好地放置假体,增加手术成功的机会。 1. 准备 准备定制的髋臼植入物,并在患?…

Representative Results

图像预处理盆骨、股骨和内假体的二元掩模由经验丰富的放射技师使用阈值和区域生长算法以及可用软件从 CT DICOM 图像中半自动分割33。准备好的标签图也由放射科医生手动校正。标签图用于增强可视化效果,方法是在下一步中将其添加到CT扫描中。这种方法可以合并体积渲染,从而可以在CT扫描上看到骨骼结构和周围组织,分割部分指示重要组织。分割结果在原…

Discussion

初次和翻修髋关节置换术可能需要个性化,以确保治疗的有效性。然而,与标准程序相比,使用定制植入物需要更长的手术准备时间。定制的3D打印植入物是一种解决方案,它使疾病导致严重骨破坏的非典型患者有机会恢复功能29。由于晚期退行性疾病发展迅速,原发性骨肿瘤或转移引起的骨缺损以及复杂的损伤或多次翻修程序,标准假体不足16.定制的植入物是…

Disclosures

The authors have nothing to disclose.

Acknowledgements

不適用。

这项研究是作为非商业合作的一部分进行的。

Materials

CarnaLifeHolo v. 1.5.2 MedApp S.A.
Custom-Made implant type Triflanged Acetabular Component BIOMET REF PM0001779
Head Constrained Modular Head + 9mm Neck for cone 12/14, Co-Cr-Mo, size 36mm BIOMET REF 14-107021
Polyethylene insert Freedom Ringloc-X Costrained Linear Ringloc-X 58mm for head 36mm / 10 * BIOMET REF 11-263658

References

  1. Smoczok, M., Starszak, K., Starszak, W. 3D printing as a significant achievement for application in posttraumatic surgeries: A literature review. Current Medical Imaging. 17 (7), 814-819 (2021).
  2. Farooqi, K. M., et al. 3D printing and heart failure: The present and the future. JACC: Heart Failure. 7 (2), 132-142 (2019).
  3. Canzi, P., et al. New frontiers and emerging applications of 3D printing in ENT surgery: A systematic review of the literature. Acta Otorhinolaryngologica Italica. 38 (4), 286-303 (2019).
  4. Lin, A. Y., Yarholar, L. M. Plastic surgery innovation with 3D printing for craniomaxillofacial operations. Missouri State Medical Association Journal. 117 (2), 136-142 (2020).
  5. Murphy, S. V., De Coppi, P., Atala, A. Opportunities and challenges of translational 3D bioprinting. Nature Biomedical Engineering. 4 (4), 370-380 (2020).
  6. Pugliese, L., et al. The clinical use of 3D printing in surgery. Updates in Surgery. 70 (3), 381-388 (2018).
  7. Yan, L., Wang, P., Zhou, H. 3D printing navigation template used in total hip arthroplasty for developmental dysplasia of the hip. Indian Journal of Orthopaedics. 54 (6), 856-862 (2020).
  8. Kuroda, S., Kobayashi, T., Ohdan, H. 3D printing model of the intrahepatic vessels for navigation during anatomical resection of hepatocellular carcinoma. International Journal of Surgery Case Reports. 41, 219-222 (2017).
  9. Learmonth, I. D., Young, C., Rorabeck, C. The operation of the century: total hip replacement. Lancet. 370 (9597), 1508-1519 (2007).
  10. . Narodowy Fundusz Zdrowia (NFZ) – finansujemy zdrowie Polaków Available from: https://www.nfz.gov.pl/o-nfz/publikacje/ (2022)
  11. Ackerman, I. N., et al. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. Musculoskeletal Disorders. 20 (1), 90 (2019).
  12. Nemes, S., Gordon, M., Rogmark, C., Rolfson, O. Projections of total hip replacement in Sweden from 2013 to 2030. Acta Orthopaedica. 85 (3), 238-243 (2014).
  13. Sloan, M., Premkumar, A., Sheth, N. P. Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. The Journal of Bone and Joint Surgery. 100 (17), 1455-1460 (2018).
  14. Schwartz, A. M., Farley, K. X., Guild, G. N., Bradbury, T. L. Projections and epidemiology of revision hip and knee arthroplasty in the United States to 2030. Journal of Arthroplasty. 35 (6), 79-85 (2020).
  15. von Lewinski, G. Individuell angepasster Beckenteilersatz in der Hüftgelenksrevision. Der Orhopäde. 49, 417-423 (2020).
  16. Angelini, A., et al. Three-dimension-printed custom-made prosthetic reconstructions: from revision surgery to oncologic reconstructions. International Orthopaedics. 43 (1), 123-132 (2019).
  17. Wang, J., et al. Three-dimensional-printed custom-made hemipelvic endoprosthesis for the revision of the aseptic loosening and fracture of modular hemipelvic endoprosthesis: a pilot study. BMC Surgery. 21 (1), 262 (2021).
  18. Pal, C. P., et al. Metastatic adenocarcinoma of proximal femur treated by custom made hip prosthesis. Journal of Orthopaedic Case Reports. 2 (1), 3-6 (2012).
  19. Kostakos, T. A., et al. Acetabular reconstruction in oncological surgery: A systematic review and meta-analysis of implant survivorship and patient outcomes. Surgical Oncology. 38, 101635 (2021).
  20. Jacquet, C., et al. Long-term results of custom-made femoral stems. Der Orhopäde. 49 (5), 408-416 (2020).
  21. Verhey, J. T., Haglin, J. M., Verhey, E. M., Hartigan, D. E. Virtual, augmented, and mixed reality ap- plications in orthopedic surgery. The International Journal of Medical Robotics and Computer Assisted Surgery. 16 (2), 2067 (2020).
  22. Ayoub, A., Pulijala, Y. The application of virtual reality and augmented reality in oral & maxillofacial surgery. BMC Oral Health. 19 (1), 238 (2019).
  23. Chytas, D., Nikolaou, V. S. Mixed reality for visualization of orthopedic surgical anatomy. World Journal of Orthopedics. 12 (10), 727-731 (2021).
  24. Gao, Y., et al. Application of mixed reality technology in visualization of medical operations. Chinese Medical Sciences Journal. 34 (2), 103-109 (2019).
  25. Zhang, J., et al. Trends in the use of augmented reality, virtual reality, and mixed reality in surgical research: A global bibliometric and visualized analysis. Indian Journal of Surgery. , 1-18 (2022).
  26. Elsayed, H., et al. Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Materials Science and Engineering C: Materials for Biological Applications. 103, 109794 (2019).
  27. Tamayo, J. A., et al. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon. 7 (5), 06892 (2021).
  28. Izakovicova, P., Borens, O., Trampuz, A. Periprosthetic joint infection: current concepts and outlook. EFORT Open Reviews. 4 (7), 482-494 (2019).
  29. Chiarlone, F., et al. Acetabular custom-made implants for severe acetabular bone defect in revision total hip arthroplasty: a systematic review of the literature. Archives of Orthopaedic and Trauma Surgery. 140 (3), 415-424 (2020).
  30. Šťastný, E., Trč, T., Philippou, T. Rehabilitation after total knee and hip arthroplasty. The Journal of Czech Physicians. 155 (8), 427-432 (2016).
  31. Chua, M. J., et al. Early mobilisation after total hip or knee arthroplasty: A multicentre prospective observational study. Public Library of Science One. 12 (6), 0179820 (2017).
  32. Wu, J., Mao, L., Wu, J. Efficacy of exercise for improving functional outcomes for patients undergoing total hip arthroplasty: A meta-analysis. Medicine (Baltimore). 98 (10), 14591 (2019).
  33. Telleria, J. J., Gee, A. O. Classifications in brief: Paprosky classification of acetabular bone loss. Orthopaedics and Related Research. 471 (11), 3725-3730 (2013).
  34. Tepper, O. M., et al. Mixed reality with HoloLens: Where virtual reality meets augmented reality in the operating room. Plastic and Reconstructive Surgery. 140 (5), 1066-1070 (2017).
  35. Joda, T., Gallucci, G. O., Wismeijer, D., Zitzmann, N. U. Augmented and virtual reality in dental medicine: A systematic review. Computers in Biology and Medicine. 108, 93-100 (2019).
  36. Goo, H. W., Park, S. J., Yoo, S. J. Advanced medical use of three-dimensional imaging in Congenital heart disease: Augmented reality, mixed reality, virtual reality, and three-dimensional printing. Korean Journal of Radiology. 21 (2), 133-145 (2020).
  37. Kasprzak, J. D., Pawlowski, J., Peruga, J. Z., Kaminski, J., Lipiec, P. First-in-man experience with real- time holographic mixed reality display of three-dimensional echocardiography during structural intervention: balloon mitral commissurotomy. European Heart Journal. 41 (6), 801 (2020).
  38. Li, G., et al. The clinical application value of mixed- reality-assisted surgical navigation for laparoscopic nephrectomy. Cancer Medicine. 9 (15), 5480-5489 (2020).
  39. Kang, S. L., et al. Mixed-reality view of cardiac specimens: a new approach to understanding complex intracardiac congenital lesions. Pediatric Radiology. 50 (11), 1610-1616 (2020).
  40. Wierzbicki, R., et al. 3D mixed-reality visualization of medical imaging data as a supporting tool for innovative, minimally invasive surgery for gastrointestinal tumors and systemic treatment as a new path in personalized treatment of advanced cancer diseases. Journal of Cancer Research and Clinical Oncology. 148 (1), 237-243 (2022).
  41. Lei, P. F., et al. Mixed reality combined with three – dimensional printing technology in total hip arthroplasty: An updated review with a preliminary case presentation. Orthopaedic Surgery. 11 (5), 914-920 (2019).
  42. Iacono, V., et al. The use of augmented reality for limb and component alignment in total knee arthroplasty: systematic review of the literature and clinical pilot study. Journal of Experimental Orthopedics. 8, 52 (2021).
check_url/63654?article_type=t

Play Video

Cite This Article
Łęgosz, P., Starszak, K., Stanuch, M., Otworowski, M., Pulik, Ł., Złahoda-Huzior, A., Skalski, A. The Use of Mixed Reality in Custom-Made Revision Hip Arthroplasty: A First Case Report. J. Vis. Exp. (186), e63654, doi:10.3791/63654 (2022).

View Video