Summary

Label-free Super-resolution Imaging Enabled by Vibrational Imaging of Swelled Tissue and Analysis

Published: May 17, 2022
doi:

Summary

By combining sample-expansion hydrogel chemistry with label-free chemical-specific stimulated Raman scattering microscopy, the protocol describes how to achieve label-free super-resolution volumetric imaging in biological samples. With an additional machine learning image segmentation algorithm, protein-specific multi-component images in tissues without antibody labeling were obtained.

Abstract

The universal utilization of fluorescence microscopy, especially super-resolution microscopy, has greatly advanced knowledge about modern biology. Conversely, the requirement of fluorophore labeling in fluorescent techniques poses significant challenges, such as photobleaching and non-uniform labeling of fluorescent probes and prolonged sample processing. In this protocol, the detailed working procedures of vibrational imaging of swelled tissue and analysis (VISTA) are presented. VISTA circumvents obstacles associated with fluorophores and achieves label-free super-resolution volumetric imaging in biological samples with spatial resolution down to 78 nm. The procedure is established by embedding cells and tissues in hydrogel, isotropically expanding the hydrogel sample hybrid, and visualizing endogenous protein distributions by vibrational imaging with stimulated Raman scattering microscopy. The method is demonstrated on both cells and mouse brain tissues. Highly correlative VISTA and immunofluorescence images were observed, validating the protein origin of imaging specificities. Exploiting such correlation, a machine learning-based image-segmentation algorithm was trained to achieve multi-component prediction of nuclei, blood vessels, neuronal cells, and dendrites from label-free mouse brain images. The procedure was further adapted to investigate pathological poly-glutamine (polyQ) aggregates in cells and amyloid-beta (Aβ) plaques in brain tissues with high throughput, justifying its potential for large-scale clinical samples.

Introduction

The development of optical imaging methods has revolutionized the understanding of modern biology because they provide unprecedented spatial and temporal information of targets across different scales, from subcellular proteins to whole organs1. Among them, fluorescence microscopy is the most well-established, with a large palette of organic dyes with high extinction coefficients and quantum yields2, easy-to-use genetic-encoded fluorescent proteins3, and super-resolution methods such as STED, PALM, and STORM for imaging nanometer-scale structures4,5. In addition, recent advancements in sample engineering and preservation chemistry, which expand specimens embedded in swellable polymer hydrogels6,7,8, enable sub-diffraction limited resolution on conventional fluorescence microscopes. For instance, typical expansion microscopy (ExM) effectively enhances the image resolution by four times with fourfold isotropic sample expansion7.

Despite its advantages, super-resolution fluorescence microscopy shares limitations that originate from fluorophore labeling. First, photobleaching and inactivation of fluorophores compromise the capacity for repetitive and quantitative fluorescence evaluations. Photobleaching is an inevitable event when light keeps pumping electrons into electronically excited states9. Second, labeling the fluorophores to the desired targets is not always a straightforward task. For instance, immunostaining demands a long and laborious sample preparation process and hinders imaging throughput10. It could also introduce artifacts due to inhomogeneous antibody-labeling, especially deep inside tissues11. Moreover, proper labeling strategies that target fluorophores for the desired proteins might be underdeveloped. For example, extensive screenings were required to find effective antibodies for Aβ plaques12. Smaller organic dyes, such as Congo red, often have limited specificity, only staining the core of the Aβ plaque. It is, therefore, highly desirable to develop a label-free super-resolution modality that circumvents the drawbacks of fluorophore-labeling and provides complementary high-resolution imaging from cells to tissues, and even to large-scale human samples.

Raman microscopy provides label-free contrast for chemical-specific structures and maps out the distribution of otherwise invisible chemical bonds by looking at the excited vibrational transitions13. In particular, stimulated Raman scattering (SRS) imaging on label-free or tiny-labeled samples has been demonstrated to have similar speed and resolution to fluorescence microscopy14,15. For example, healthy brain region has been readily differentiated from tumor-infiltrated region in human and mouse tissues16,17. Aβ plaques were also clearly imaged by targeting protein CH3 vibration (2940 cm−1) and amide I (1660 cm−1) on a fresh-frozen brain slice without any labeling18. Raman scattering, therefore, offers robust label-free contrast that overcomes the limitations of fluorophores. The question then became how one can accomplish super-resolution capacity using Raman scattering, which could reveal nanoscale structural details and functional implications in biological samples.

Although extensive efforts have been made to achieve super-resolution for Raman microscopy with elegant optic instrumentations, the resolution enhancement on biological samples has been rather limited19,20,21. Here, based on the recent works22,23, we present a protocol that combines a sample-expansion strategy with stimulated Raman scattering for super-resolution label-free vibrational imaging, named Vibrational Imaging of Swelled Tissues and Analysis (VISTA). First, cells and tissues were embedded in hydrogel matrixes through an optimized protein-hydrogel hybridization protocol. The hydrogel tissue hybrids were then incubated in detergent-rich solutions for delipidation, followed by expansion in water. The expanded samples were then imaged by a regular SRS microscope by targeting CH3 vibrations from retained endogenous proteins. VISTA, owing to its label-free imaging feature, bypasses photobleaching and inhomogeneous labeling arising from fluorophore labeling, with much higher sample processing throughput. This is also the first sub-100 nm (down to 78 nm) label-free imaging reported. No additional optical instrumentation besides typical SRS setup22,24 is required, making it readily applicable. With correlative VISTA and immunofluorescence images, an established machine-learning image-segmentation algorithm was trained25,26 to generate protein-specific multiplex images from single-channel images. The method was further applied to investigate Aβ plaques in mouse brain tissues, providing a holistic image suited for sub-phenotyping based on the fine views of the plaque core and peripheral filaments surrounded by cell nuclei and blood vessels.

Protocol

All animal procedures performed in this study were approved by the California Institute of Technology Institutional Animal Care and Use Committee (IACUC), and the protocol procedures complied with all relevant ethical regulations. 1. Preparation of stock solutions for fixation and sample expansion Prepare 40 mL of fixation solution by first dissolving 12 g of acrylamide (30% w/v) solid in 26 mL of nuclease-free water. Then, add 10 mL of 16% PFA stock solution to th…

Representative Results

After establishing the working principle of the imaging and analysis method, image registration was done to evaluate the expansion ratio and to ensure isotropic expansion during sample processing (Figure 1A,B). Both untreated and VISTA samples were imaged while targeting the bond vibration at 2940 cm−1, which originates from CH3 of endogenous proteins. In untreated samples, the protein-rich structures like nuclei were dark due to the overwhelming …

Discussion

In summary, we present the protocol for VISTA, which is a label-free modality to image protein-rich cellular and subcellular structures of cells and tissues. By targeting endogenous CH3 from proteins in hydrogel-embedded cell and tissues, the method achieves an effective imaging resolution down to 78 nm in biological samples and resolves minor extrusion in Huntingtin aggregates and fibrils in Aβ plaques. This technique is the first instance to report sub-100 nm resolution for label-free imaging modalities…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We acknowledge the Caltech Biological Imaging Facility for software support. L.W. acknowledges the support of the National Institutes of Health (NIH Director's New Innovator Award, DP2 GM140919-01), Amgen (Amgen Early Innovation Award), and the start-up funds from the California Institute of Technology.

Materials

1.0 M Tris pH 8 Sigma-Aldrich 648314
16% Paraformaldehyde Electron microscopy science 15710 diluted to 4% in PBS
25x water immersion objective Olympus XLPLN25XWMP2 NA 1.05
5XFAD Mice Mutant Mouse Resource and Research Centers and the Jackson Laboratory B6SJL-Tg (APPSwFlLon, PSEN1*M146L*L286 V) 6799Vas/Mmjax Alzheimer brain
60x water immersion objective Olympus UPLSAPO60XWIR NA 1.2
Acrylamide Sigma-Aldrich A9099
ammonium persulfate Sigma-Aldrich A3678
anti-MAP2 Cell Signaling Technology 8707
anti-NeuN Cell Signaling Technology 24307
borosilicate coverslip #1.5 Fisher Scientific 1254581
C57BL/6J Mice Jackson Laboratory (JAX) 664 Normal mice
D2O Sigma-Aldrich 151882 for SRS calibration
DAPI Thermo Fisher D1306
DMEM GIBCO 10566-016
FBS GIBCO A4766
glass slide 3" x 1" x 1 mm VWR 16004-430
goat anti-chicken IgY, Alexa Fluor 647 Invitrogen A-21449
goat anti-mouse IgG, Alexa Fluor 647 Invitrogen A-21236
goat anti-rabbit IgG, Alexa Fluor 488 Invitrogen A-11034
goat anti-rat IgG, Alexa Fluor 568 Invitrogen A-11077
Grace Bio-Labs Press-To-Seal silicone isolators Sigma-Aldrich GBL664108 microscope spacer
Htt-97Q-GFP Plasmid Gift from Prof. R. Kopito and Prof. F.-U.Hartl.
Laser scanning microscope Olympus FV3000 laser scanning confocal microscope
lipofectamine 3000 Thermo Fisher L3000001 transfection agent
Lycopersicon Esculentum Lectin DyLight®594 (lectin) Vector Laboratories DL-1177-1
Microscope spacer Grace Bio-Labs 621502
N,N′-methylenebisacrylamide (BIS) Sigma-Aldrich M1533 bought as 2% solution in water
Nuclease free water Thermo Fisher 10977-015
Penicillin-Streptomycin GIBCO 15140-122
poly-strene beads Sigma-Aldrich 43302 for resolution characterization
Sodium Acrylate Sigma-Aldrich 408220
sodium dodecyl sulfate Sigma-Aldrich 71725
soft-wool paint brush #3 TANIS 000333
SRS Laser A.P.E picoEmerald 2ps pulse width
tetramethylethylenediamine Sigma-Aldrich T9281
Tissue culture flask 25 cm2 Corning 430639
Triton X-100 Sigma-Aldrich T8787
Tween-20 Sigma-Aldrich P9416
tweezer Fine Science Tool 11295-51
Vibrotome Leica VT1200S the vibratome

References

  1. Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nature Methods. 7 (8), 603-614 (2010).
  2. Lavis, L. D., Bright Raines, R. T. ideas for chemical biology. ACS Chemical Biology. 3 (3), 142-155 (2008).
  3. Tsien, R. Y. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angewandte Chemie (International Edition in English). 48 (31), 5612-5626 (2009).
  4. Huang, B., Bates, M., Zhuang, X. Super-resolution fluorescence microscopy. Annual Review of Biochemistry. 78, 993-1016 (2009).
  5. Sahl, S. J., Hell, S. W., Jakobs, S. Fluorescence nanoscopy in cell biology. Nature Reviews Molecular Cell Biology. 18 (11), 685-701 (2017).
  6. Wassie, A. T., Zhao, Y., Boyden, E. S. Expansion microscopy: Principles and uses in biological research. Nature Methods. 16 (1), 33-41 (2019).
  7. Chen, F., Tillberg, P. W., Boyden, E. S. Expansion microscopy. Science. 347 (6221), 543-548 (2015).
  8. Gambarotto, D., et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nature Methods. 16 (1), 71-74 (2019).
  9. Demchenko, A. P. Photobleaching of organic fluorophores: Quantitative characterization, mechanisms, protection. Methods and Applications in Fluorescence. 8 (2), 022001 (2020).
  10. Murray, E., et al. scalable proteomic imaging for high-dimensional profiling of intact systems. Cell. 163 (6), 1500-1514 (2015).
  11. Kim, S. -. Y., et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences. 112 (46), 6274-6283 (2015).
  12. Liebmann, T., et al. Three-dimensional study of Alzheimer’s disease hallmarks using the IDISCO clearing method. Cell Report. 16 (4), 1138-1152 (2016).
  13. Min, W., Freudiger, C. W., Lu, S., Xie, X. S. Coherent nonlinear optical imaging: Beyond fluorescence microscopy. Annual Review of Physical Chemistry. 62 (1), 507-530 (2011).
  14. Saar, B. G., et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science. 330 (6009), 1368-1370 (2010).
  15. Cheng, J. -. X., Xie, X. S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science. 350 (6264), 1054-1063 (2015).
  16. Ji, M., et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Science Translational Medicine. 5 (201), (2013).
  17. Wei, M., et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 116 (14), 6608-6617 (2019).
  18. Ji, M., et al. Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy. Science Advances. 4 (11), 39 (2018).
  19. Silva, W. R., Graefe, C. T., Frontiera, R. R. Toward label-free super-resolution microscopy. ACS Photonics. 3 (1), 79-86 (2016).
  20. Gong, L., Zheng, W., Ma, Y., Huang, Z. Higher-order coherent anti-stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nature Photonics. 14 (2), 115-122 (2020).
  21. Watanabe, K., et al. Structured line illumination Raman microscopy. Nature Communication. 6 (1), 10095 (2015).
  22. Qian, C., et al. Super-resolution label-free volumetric vibrational imaging. Nature Communications. 12 (1), 3648 (2021).
  23. Lin, L. -. E., Miao, K., Qian, C., Wei, L. High spatial-resolution imaging of label-free in vivo protein aggregates by VISTA. Analyst. 146 (13), 4135-4145 (2021).
  24. Mutlu, A. S., Chen, T., Deng, D., Wang, M. C. Label-free imaging of lipid storage dynamics in Caenorhabditis elegans using stimulated Raman scattering microscopy. Journal of Visualized Experiments. (171), e61870 (2021).
  25. Ounkomol, C., Seshamani, S., Maleckar, M. M., Collman, F., Johnson, G. R. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nature Methods. 15 (11), 917-920 (2018).
  26. Falk, T., et al. U-Net: Deep learning for cell counting, detection, and morphometry. Nature Methods. 16 (1), 67-70 (2019).
  27. Yang, B., et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 158 (4), 945-958 (2014).
  28. Ku, T., et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nature Biotechnology. 34 (9), 973-981 (2016).
  29. Mlodzianoski, M. J., et al. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections. Nature Methods. 15 (8), 583-586 (2018).
  30. Querol-Vilaseca, M., et al. Nanoscale structure of amyloid-β plaques in Alzheimer’s disease. Scientific Reports. 9 (1), 5181 (2019).
  31. Oakley, H., et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. Journal of Neuroscience. 26 (40), 10129-10140 (2006).
  32. Bartels, T., De Schepper, S., Hong, S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science. 370, 66-69 (2020).
  33. Chen, F., et al. Nanoscale imaging of RNA with expansion microscopy. Nature Methods. 13 (8), 679-684 (2016).
  34. Tillberg, P. W., et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nature Biotechnology. 34 (9), 987-992 (2016).
  35. Renier, N., et al. IDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 159 (4), 896-910 (2014).
  36. Zhuge, M., et al. Ultrasensitive vibrational imaging of retinoids by visible preresonance stimulated Raman scattering microscopy. Advanced Science. 8 (9), 2003136 (2021).
  37. Miao, K., Wei, L. Live-cell imaging and quantification of PolyQ aggregates by stimulated Raman scattering of selective deuterium labeling. ACS Central Science. 6 (4), 478-486 (2020).
  38. Klimas, A., et al. Nanoscale imaging of biomolecules using molecule anchorable gel-enabled nanoscale in-situ fluorescence microscopy. Research Square. , (2021).
  39. Shi, L., et al. Super-resolution vibrational imaging using expansion stimulated Raman scattering microscopy. Advanced Science. , (2022).
  40. M’Saad, O., et al. All-optical visualization of specific molecules in the ultrastructural context of brain tissue. bioRxiv. , (2022).
  41. Zhao, Y., et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nature Biotechnology. 35 (8), 757-764 (2017).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Miao, K., Lin, L., Qian, C., Wei, L. Label-free Super-resolution Imaging Enabled by Vibrational Imaging of Swelled Tissue and Analysis. J. Vis. Exp. (183), e63824, doi:10.3791/63824 (2022).

View Video