Summary

Weiterentwicklung der hochauflösenden Bildgebung von Virusanordnungen in Flüssigkeit und Eis

Published: July 20, 2022
doi:

Summary

Hier werden Protokolle beschrieben, um Virusanordnungen herzustellen, die für die Flüssig-EM- und Kryo-EM-Analyse auf der Nanoskala mittels Transmissionselektronenmikroskopie geeignet sind.

Abstract

Das Interesse an der Flüssigelektronenmikroskopie (Flüssig-EM) ist in den letzten Jahren sprunghaft angestiegen, da Wissenschaftler nun Echtzeitprozesse auf der Nanoskala beobachten können. Es ist äußerst wünschenswert, hochauflösende Kryo-EM-Informationen mit dynamischen Beobachtungen zu koppeln, da viele Ereignisse auf schnellen Zeitskalen auftreten – im Millisekundenbereich oder schneller. Verbesserte Kenntnisse über flexible Strukturen können auch bei der Entwicklung neuartiger Reagenzien zur Bekämpfung neu auftretender Krankheitserreger wie SARS-CoV-2 helfen. Noch wichtiger ist, dass die Betrachtung biologischer Materialien in einer flüssigen Umgebung einen einzigartigen Einblick in ihre Leistung im menschlichen Körper bietet. Hier werden neu entwickelte Methoden vorgestellt, um die nanoskaligen Eigenschaften von Virusanordnungen in flüssigem und glasigem Eis zu untersuchen. Um dieses Ziel zu erreichen, wurden gut definierte Stichproben als Modellsysteme verwendet. Direkte Vergleiche von Probenvorbereitungsmethoden und repräsentativen Strukturinformationen werden vorgestellt. Sub-Nanometer-Merkmale werden für Strukturen gezeigt, die im Bereich von ~3,5-Å-10 Å aufgelöst sind. Andere aktuelle Ergebnisse, die diesen komplementären Rahmen unterstützen, umfassen dynamische Einblicke in Impfstoffkandidaten und Antikörper-basierte Therapien, die in Flüssigkeit abgebildet sind. Insgesamt verbessern diese korrelativen Anwendungen unsere Fähigkeit, molekulare Dynamik zu visualisieren, und bieten einen einzigartigen Kontext für ihre Verwendung in der menschlichen Gesundheit und Krankheit.

Introduction

Biomedizinische Forschung verbessert unser Verständnis von menschlicher Gesundheit und Krankheit durch die Entwicklung neuer Technologien. Hochauflösende Bildgebung verändert unseren Blick auf die Nanowelt – und ermöglicht es uns, Zellen und Moleküle in exquisiten Details zu untersuchen 1,2,3,4,5. Statische Informationen dynamischer Komponenten wie weicher Polymere, Proteinanordnungen oder menschlicher Viren zeigen nur eine begrenzte Momentaufnahme ihrer komplexen Erzählung. Um besser zu verstehen, wie molekulare Einheiten funktionieren, müssen ihre Struktur und Funktion gemeinsam untersucht werden.

Jüngste Fortschritte bei der Herstellung von Materialien wie atomar dünnem Graphen oder siliziumbasierten Mikrochips bieten neue Möglichkeiten für die Echtzeit-Strukturfunktionsanalyse mit Transmissionselektronenmikroskopen (TEMs). Diese Materialien können hermetisch abgeschlossene Kammern für die Live-EM-Bildgebung 6,7,8,9,10,11 erzeugen. Das neue Feld der Flüssig-EM, die Raumtemperatur korreliert mit Kryo-EM, bietet beispiellose Ansichten von harten oder weichen Materialien in Lösung, so dass Wissenschaftler gleichzeitig die Struktur und Dynamik ihrer Probe untersuchen können. Flüssig-EM-Anwendungen umfassen Echtzeitaufnahmen von therapeutischen Nanopartikeln, die mit Krebsstammzellen interagieren, sowie Veränderungen in den molekularen Feinheiten viraler Krankheitserreger12,13,14.

So wie methodische Fortschritte die Auflösungsrevolution im Kryo-EM-Bereich vorangetrieben haben, sind neue Techniken und Methoden erforderlich, um den Einsatz von Flüssig-EM als Hochdurchsatzwerkzeug für die wissenschaftliche Gemeinschaft zu erweitern. Das übergeordnete Ziel der hier vorgestellten Methoden ist es, die Protokolle zur Vorbereitung von Flüssig-EM-Proben zu rationalisieren. Der Grund für die entwickelten Techniken ist der Einsatz neuer Mikrochip-Designs und Autoloader-Geräte, die sowohl für die Datenerfassung von Flüssigkeiten als auch für Kryo-EM geeignet sind (Abbildung 1)7,14,15,16,17). Die Baugruppen werden mechanisch mit Standard-Rasterclips für automatisierte Instrumente wie dem Krios versiegelt, der mehrere Proben pro Sitzung aufnehmen kann, oder einem F200C TEM (Abbildung 2). Diese Methodik erweitert den Einsatz hochauflösender Bildgebung über Standard-Kryo-EM-Anwendungen hinaus und demonstriert breitere Zwecke für die Echtzeit-Materialanalyse.

Im aktuellen Videoartikel werden Protokolle zur Herstellung von Virusbaugruppen in Flüssigkeit mit und ohne handelsübliche Probenhalter vorgestellt. Mit dem speziellen Probenhalter für Flüssig-EM können dünnflüssige Proben strukturelle Informationen liefern, die mit Kryo-EM-Proben vergleichbar sind, sowie dynamische Einblicke in die Proben. Demonstriert werden auch Methoden zur Vorbereitung flüssiger Proben mit Autoloader-Werkzeugen für Hochdurchsatzroutinen. Der große Vorteil gegenüber anderen Techniken besteht darin, dass die automatisierte Probenproduktion es dem Benutzer ermöglicht, seine Proben vor der Datenerfassung schnell auf optimale Dicke und Elektronendosierung zu beurteilen. Diese Screening-Technik identifiziert schnell ideale Bereiche für Echtzeitaufnahmen in Flüssigkeit oder Eis12,14,18,19. Für die Zwecke der 3D-Strukturbestimmung kann Liquid-EM die seit langem etablierten Kryo-EM-Methoden ergänzen, die in Kryo-EM implementiert sind. Leser, die konventionelle TEM- oder Kryo-EM-Technologien einsetzen, können die Verwendung von Flüssig-EM-Workflows in Betracht ziehen, um neue, dynamische Beobachtungen ihrer Proben in einer Weise bereitzustellen, die ihre aktuellen Strategien ergänzt.

Zu den in diesem Protokoll verwendeten Virusproben gehören gereinigte adenoassoziierte Virussubtypen 3 (AAV), die als Geschenk gewonnen und unter Standardbedingungen kultiviertwerden 12. Ebenfalls verwendet wurden nicht-infektiöse subvirale SARS-CoV-2-Anordnungen, die aus dem Serum von COVID-19-Patienten12 gewonnen und aus einer kommerziellen Quelle gewonnen wurden. Schließlich wurden gereinigte Affenrotavirus (SA11-Stamm) Doppelschichtpartikel (DLPs) aus dem Labor von Dr. Sarah M. McDonald Esstman an der Wake Forest University gewonnen und unter Standardbedingungen 6,17 kultiviert. Die hier beschriebenen Softwarepakete sind frei verfügbar und die Links wurden im Abschnitt Materialverzeichnis bereitgestellt.

Protocol

1. Beladung des Probenhalters für Flüssig-EM Reinigen Sie die Siliziumnitrid (SiN)-Mikrochips, indem Sie jeden Chip in 150 ml Aceton für 2 min inkubieren, gefolgt von einer Inkubation in 150 ml Methanol für 2 min. Lassen Sie die Späne im laminaren Luftstrom trocknen. Plasmareinigung der getrockneten Späne mit einem Glimmentladungsinstrument, das unter Standardbedingungen von 30 W, 15 mA für 45 s mit Argongas betrieben wird. Legen Sie einen Mikrochip mit trockener Basi…

Representative Results

Ein Liquid-TEM mit 200 kV wurde für alle Liquid-EM-Bildgebungsexperimente und ein Kryo-TEM mit 300 kV für die gesamte Kryo-EM-Datenerfassung verwendet. Repräsentative Bilder und Strukturen mehrerer Viren werden präsentiert, um den Nutzen der Methoden bei verschiedenen Testpersonen zu demonstrieren. Dazu gehören rekombinante adeno-assoziierte Virus-Subtyp 3 (AAV), SARS-CoV-2-subvirale Anordnungen, die aus dem Patientenserum abgeleitet sind, und Affenrotavirus-Doppelschichtpartikel (DLPs), SA11-Stamm. Zunächst werden…

Discussion

Es werden neue Möglichkeiten zur Optimierung der aktuellen Liquid-EM-Arbeitsabläufe durch den Einsatz neuer automatisierter Tools und Technologien aus dem Kryo-EM-Bereich eröffnet. Anwendungen mit der neuen Mikrochip-Sandwichtechnik sind im Vergleich zu anderen Methoden von Bedeutung, da sie eine hochauflösende bildgebende Analyse in flüssigem oder glasigem Eis ermöglichen. Einer der kritischsten Schritte im Protokoll ist die Herstellung von Proben mit der idealen Flüssigkeitsdicke, um exquisite Details auf Nanoeb…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Autoren danken Dr. Luk H. Vandenberghe (Harvard Medical School, Abteilung für Augenheilkunde) für die Bereitstellung von gereinigtem AAV-3. Diese Arbeit wurde von den National Institutes of Health und dem National Cancer Institute unterstützt (R01CA193578, R01CA227261, R01CA219700 an D.F.K.).

Materials

Acetone Fisher Scientific  A11-1 1 Liter
Autoloader clipping tool ThermoFisher Scientific N/A Also SubAngstrom supplier
Autoloader grid clips ThermoFisher Scientific N/A top and bottom clips
Carbon-coated gold EM grids Electron Microcopy Sciences CF400-AU-50 400-mesh, 5-nm thickness
COVID-19 patient serum RayBiotech CoV-Pos-S-500 500 microliters of PCR+ serum
Methanol Fisher Scientific  A412-1 1 Liter
Microwell-integrad microchips Protochips, Inc. EPB-42A1-10 10×10-mm window arrays
TEMWindows microchips Simpore Inc. SN100-A10Q33B 9 large windows, 10-nn thick
TEMWindows microchips Simpore, Inc.  SN100-A05Q33A 9 small windows, 5-nm thick
Top microchips Protochips, Inc. EPT-50W 500 mm x 100 mm window
Whatman #1 filter paper Whatman 1001 090 100 pieces, 90 mm
Equipment 
DirectView direct electron detector Direct Electron 6-micron pixel spacing
Falcon 3 EC direct electron detector ThermoFisher Scientific 14-micron pixel spacing
Gatan 655 Dry pump station Gatan, Inc.  Pump holder tip to 10-6 range
Mark IV Vitrobot ThermoFisher Scientific state-of-the-art specimen preparation unit 
PELCO easiGlow, glow discharge unit Ted Pella, Inc.  Negative polarity mode
Poseidon Select specimen holder Protochips, Inc.  FEI compatible;specimen holder
Talos F200C TEM ThermoFisher Scientific 200 kV; Liquid-TEM
Titan Krios G3 ThermoFisher Scientific 300 kV; Cryo-TEM
Freely available software Website link Comments (optional)
cryoSPARC https://cryosparc.com/ other image processing software
CTFFIND4 https://grigoriefflab.umassmed.edu/ctffind4 CTF finding program
MotionCorr2 https://emcore.ucsf.edu/ucsf-software
RELION https://www3.mrc-lmb.cam.ac.uk/relion/index.php?title=Main_Page
SerialEM https://bio3d.colorado.edu/SerialEM/
UCSF Chimera https://www.cgl.ucsf.edu/chimera/ molecular structure analysis software package

References

  1. Deng, W., et al. Assembly, structure, function and regulation of type III secretion systems. Nature Reviews Microbiology. 15 (6), 323-337 (2017).
  2. Oikonomou, C. M., Chang, Y. -. W., Jensen, G. J. A new view into prokaryotic cell biology from electron cryotomography. Nature Reviews Microbiology. 14 (4), 205-220 (2016).
  3. Murata, K., Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et Biophysica Acta. General Subjects. 1862 (2), 324-334 (2018).
  4. DiMaio, F., et al. Atomic accuracy models from 4.5 Å cryo-electron microscopy data with density-guided iterative local refinement. Nature Methods. 12 (4), 361-365 (2015).
  5. Frank, J., et al. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature. 376 (6539), 441-444 (1995).
  6. Dukes, M. J., Gilmore, B. L., Tanner, J. R., McDonald, S. M., Kelly, D. F. In situ TEM of biological assemblies in liquid. Journal of Visualized Experiments. (82), e50936 (2013).
  7. Dearnaley, W. J., et al. Liquid-cell electron tomography of biological systems. Nano Letters. 19 (10), 6734-6741 (2019).
  8. Park, J., et al. Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Letters. 15 (7), 4737-4744 (2015).
  9. Chen, Q., et al. 3D Motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Letters. 13 (9), 4556-4561 (2013).
  10. Yuk, J. M., et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 336 (6077), 61-64 (2012).
  11. Wang, X., Yang, J., Andrei, C. M., Soleymani, L., Grandfield, K. Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopy. Communications Chemistry. 1, 80 (2018).
  12. Jonaid, G., et al. High-resolution imaging of human viruses in liquid droplets. Advanced Materials. 33 (37), 2103221 (2021).
  13. Pohlmann, E. S., et al. Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Letters. 15 (4), 2329-2335 (2015).
  14. Jonaid, G. M., et al. Automated tools to advance high-resolution imaging in liquid. Microscopy and Microanalysis. , 1-10 (2022).
  15. Varano, A. C., et al. Customizable cryo-EM chips improve 3D analysis of macromolecules. Microscopy and Microanalysis. 25, 1310-1311 (2019).
  16. Alden, N. A., et al. Cryo-EM-on-a-chip: Custom-designed substrates for the 3D analysis of macromolecules. Small. 15 (21), 1900918 (2019).
  17. Tanner, J. R., et al. Cryo-SiN – An alternative substrate to visualize active viral assemblies. Journal of Analytical and Molecular Techniques. , (2016).
  18. Solares, M. J., et al. Microchip-based structure determination of disease-relevant p53. Analytical Chemistry. 92 (23), 15558-15564 (2020).
  19. Casasanta, M. A., et al. Microchip-based structure determination of low-molecular weight proteins using cryo-electron microscopy. Nanoscale. 13 (15), 7285-7293 (2021).
  20. Mastronarde, D. N. Advanced data acquisition from electron microscopes with SerialEM. Microscopy and Microanalysis. 24, 864-865 (2018).
  21. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. Journal of Structural Biology. 180 (3), 519-530 (2012).
  22. Punjani, A., Rubinstein, J. L., Fleet, D. J., Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods. 14 (3), 290-296 (2017).
  23. Pettersen, E. F., et al. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry. 25 (13), 1605-1612 (2004).
  24. Goddard, T. D., Huang, C. C., Ferrin, T. E. Visualizing density maps with UCSF Chimera. Journal of Structural Biology. 157 (1), 281-287 (2007).
  25. Lerch, T. F., Xie, Q., Chapman, M. S. The structure of adeno-associated virus serotype 3B (AAV-3B): Insights into receptor binding and immune evasion. Virology. 403 (1), 26-36 (2010).
  26. Sharma, G., et al. Affinity grid-based cryo-EM of PKC binding to RACK1 on the ribosome. Journal of Structural Biology. 181 (2), 190-194 (2013).
  27. Kiss, G., et al. Capturing enveloped viruses on affinity grids for downstream cryo-electron microscopy applications. Microscopy and Microanalysis. 20 (1), 164-174 (2014).
  28. Degen, K., Dukes, M., Tanner, J. R., Kelly, D. F. The development of affinity capture devices—a nanoscale purification platform for biological in situ transmission electron microscopy. Rsc Advances. 2 (6), 2408-2412 (2012).
  29. Hui, S. W., Parsons, D. F. Electron diffraction of wet biological membranes. Science. 184 (4132), 77-78 (1974).
  30. Hui, S. W., Parsons, D. F., Cowden, M. Electron diffraction of wet phospholipid bilayers. Proceedings of the National Academy of Sciences of the United States of America. 71 (12), 5068-5072 (1974).
  31. Parsons, D. F., Matricardi, V. R., Moretz, R. C., Turner, J. N. Electron microscopy and diffraction of wet unstained and unfixed biological object. Advances in Biological and Medical Physics. 15, 161-270 (1974).
  32. Parsons, D. F. Structure of wet specimens in electron microscopy. Improved environmental chambers make it possible to examine wet specimens easily. Science. 186 (4162), 407-414 (1974).
  33. Matricardi, V. R., Moretz, R. C., Parsons, D. F. Electron diffraction of wet proteins: Catalase. Science. 177 (4045), 268-270 (1972).
check_url/63856?article_type=t

Play Video

Cite This Article
DiCecco, L., Berry, S., Jonaid, G. M., Solares, M. J., Kaylor, L., Gray, J. L., Bator, C., Dearnaley, W. J., Spilman, M., Dressel-Dukes, M. J., Grandfield, K., McDonald Esstman, S. M., Kelly, D. F. Advancing High-Resolution Imaging of Virus Assemblies in Liquid and Ice. J. Vis. Exp. (185), e63856, doi:10.3791/63856 (2022).

View Video