Summary

造血干细胞和祖细胞的CRISPR/Cas9基因编辑用于基因治疗应用

Published: August 09, 2022
doi:

Summary

本协议描述了一种优化的造血干细胞和祖细胞(HSPC)培养程序,用于 体内基因编辑细胞的稳健植入。

Abstract

CRISPR / Cas9是一种高度通用和高效的基因编辑工具,广泛用于纠正各种基因突变。体 对造血干细胞和祖细胞(HSPCs)进行基因操作的可行性使HSPCs成为基因治疗的理想靶细胞。然而,HSPC在 离体 培养中适度失去其植入和多谱系再种群潜力。在本研究中,描述了改善HSPC植入并在 体内产生更多基因修饰细胞的理想培养条件。当前报告显示了优化的 体外 培养条件,包括培养基类型、独特的小分子混合物补充剂、细胞因子浓度、细胞培养板和培养密度。除此之外,还提供了优化的HSPC基因编辑程序,以及基因编辑事件的验证。为了 体内 验证,显示小鼠受体的基因编辑HSPC输注和植入后分析。结果表明,培养系统增加了 体外 功能性HSC的频率,从而在 体内对基因编辑细胞进行了稳健的植入。

Introduction

在同种异体移植环境中无法获得人类白细胞抗原(HLA)匹配的供体,以及高度通用和安全的基因工程工具的快速发展,使自体造血干细胞移植(HSCT)成为遗传性血液疾病的治愈性治疗策略12。自体造血干细胞和祖细胞(HSPC)基因治疗涉及收集患者的HSPC,基因操作,纠正致病突变以及将基因校正的HSPC移植到患者体内34。然而,基因治疗的成功结果取决于可移植基因修饰移植物的质量。HSPC的基因操作步骤和离培养通过降低长期造血干细胞(LT-HSCs)的频率来影响移植物的质量,因此需要输注大剂量的基因操纵HSPCs256

目前正采用几种小分子,包括SR1和UM171,以稳健地扩增脐带血HSPCs78。对于成年HSPC,由于在动员中获得更高的细胞产量,因此不需要稳健的扩增。然而,在离体培养中保留分离的HSPC的干性对其基因治疗应用至关重要。因此,使用小分子组合开发了专注于造血干细胞(HSC)培养富集的方法:白藜芦醇,UM729和SR1(RUS)7。优化的HSPC培养条件促进了HSC的富集,导致体内基因修饰HSC的频率增加,并减少了基因操纵大剂量HSPC的需求,促进了具有成本效益的基因治疗方法8

在这里,描述了HSPC培养的综合方案,以及 体内基因编辑细胞的输注和分析。

Protocol

免疫缺陷小鼠的体内实验由印度韦洛尔基督教医学院动物伦理委员会(IAEC)批准并按照其指南进行。在获得机构审查委员会(IRB)批准后,在知情同意的情况下,从健康人类供体收集粒细胞集落刺激因子(G-CSF)动员的外周血样本。 1. 外周血单核细胞(PBMNCs)的分离和CD34 + 细胞的纯化 按照以下步骤执行 PBMNC 隔离。注意:对于体外</em…

Representative Results

本研究确定了理想的HSPC培养条件,以促进CD34 + CD133 + CD90 + HSC在离体培养中的保留。为了证明HSC的培养富集以及基因修饰HSC的增强生成,提供了PBMNC分离,CD34 +细胞纯化,培养,基因编辑,移植,植入表征和体内基因修饰细胞的优化程序(图1)。纯化后,进行流式细胞术评估以检查HSPC标志物,并将HSPC培养72 h。培养72小时后,用C…

Discussion

HSPC基因治疗的成功结果主要取决于移植物中可移植HSC的质量和数量。然而,HSC的功能特性在基因治疗产品的准备阶段受到很大影响,包括体外培养和与基因操作程序相关的毒性。为了克服这些限制,我们已经确定了理想的HSPC培养条件,这些条件在离体培养中保留了CD34 + CD133 + CD90 + HSC的干性。许多研究小组使用SR1或UM171或其他分子作为独立分子在体外?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢CSCR流式细胞术设施和动物设施的工作人员。A.C.由ICMR-SRF研究金资助,K.V.K.由DST-INSPIRE研究金资助,P.B.由CSIR-JRF研究金资助这项工作由印度政府生物技术部资助(拨款号BT/PR26901/MED/31/377/2017和BT/PR31616/MED/31/408/2019)

Materials

4D-Nucleofector® X Unit LONZA BIOSCIENCE AAF-1003X
4D-Nucleofector™ X Kit ( 16-well Nucleocuvette™ Strips) LONZA BIOSCIENCE V4XP-3032
Antibiotic-Antimycotic (100X) THERMO SCIENTIFIC 15240096
Anti-human CD45 APC BD BIOSCIENCE  555485 
Anti-human CD13 PE BD BIOSCIENCE 555394
Anti-human CD19 PerCP BD BIOSCIENCE 340421
Anti-human CD3 PE-Cy7 BD BIOSCIENCE 557749
Anti-human CD90 APC BD BIOSCIENCE 561971
Anti-human CD133/1  Miltenyibiotec 130-113-673
Anti-human CD34 PE BD BIOSCIENCE 348057
Anti-mouse CD45.1 PerCP-Cy5 BD BIOSCIENCE 560580
Blood Irradator-2000  BRIT (Department of Biotechnology, India) BI 2000 
Cell culture dish (delta surface-treated 6-well plates) NUNC (THERMO SCIENTIFIC) 140675
CrysoStor CS10 BioLife solutions #07952
Busulfan CELON LABS (60mg/10mL)
Guide-it Recombinant Cas9 TAKARA BIO 632640
Cas9-eGFP SIGMA C120040 
 Centrifuge tube-15ml CORNING 430790
 Centrifuge tube-50ml NUNC (THERMO SCIENTIFIC) 339652
DMSO MPBIO 219605590
DNAase STEMCELL TECHNOLOGIES 6469
Dulbecco′s Phosphate Buffered Saline- 1X HYCLONE SH30028.02
EasySep™ Human CD34 Positive Selection Kit II STEMCELL TECHNOLOGIES 17856
EasySep magnet STEMCELL TECHNOLOGIES 18000
Electrophoresis unit ORANGE INDIA HDS0036
FBS THERMO SCIENTIFIC 10270106
Flow cytometer – ARIA III BD BIOSCIENCE
FlowJo  BD BIOSCIENCE  -
Flt3-L PEPROTECH 300-19-1000
Gel imaging system CELL BIOSCIENCES 11630453
HighPrep DTR reagent MAGBIOGENOMICS DT-70005
Human BD Fc Block BD BIOSCIENCE 553141
IL6 PEPROTECH 200-06-50
IMDM media THERMO SCIENTIFIC 12440053
Infrared lamp MURPHY
Insulin syringe 6mm 31G BD BIOSCIENCE 324903
Ketamine KETMIN 50
Loading dye 6X TAKARA BIO 9156
Lymphoprep STEMCELL TECHNOLOGIES 7851
Mice Restrainer AVANTOR TV-150
Nano drop spectrophotometer THERMO SCIENTIFIC ND-2000C
Neubauer cell counting chamber ROHEM INSTRUMENTS CC-3073
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) The Jackson Laboratory RRID:IMSR_JAX:005557
NOD,B6.SCID Il2rγ−/−KitW41/W41 (NBSGW) The Jackson Laboratory RRID:IMSR_JAX:026622
Nunc delta 6-well plate THERMO SCIENTIFIC 140675
Polystyrene round-bottom tube BD 352008
P3 primary cell Nucleofection solution LONZA BIOSCIENCE PBP3-02250
Pasteur pipette FISHER SCIENTIFIC 13-678-20A
PCR clean-up kit TAKARA BIO 740609.25
Mouse Pie Cage FISCHER SCIENTIFIC 50-195-5140
polystyrene round-bottom tube (12 x 75 mm) STEMCELL TECHNOLOGIES 38007
Primer3 Whitehead Institute for Biomedical Research https://primer3.ut.ee/
QuickExtract™ DNA Extraction Solution Lucigen QE09050
Reserveratrol STEMCELL TECHNOLOGIES 72862
SCF PEPROTECH 300-07-1000
SFEM-II STEMCELL TECHNOLOGIES 9655
sgRNA SYNTHEGO
SPINWIN TARSON 1020
StemReginin 1 STEMCELL TECHNOLOGIES 72342
ICE analysis tool SYNTHEGO https://ice.synthego.com/
Tris-EDTA buffer solution (TE) 1X SYNTHEGO Supplied with gRNA 
Thermocycler APPLIED BIOSYSTEMS 4375305
TPO PEPROTECH 300-18-1000
Trypan blue HIMEDIA LABS TCL046
UM171 STEMCELL TECHNOLOGIES 72914
UM729 STEMCELL TECHNOLOGIES 72332
Xylazine XYLAXIN – INDIAN IMMUNOLOGICALS LIMITED

References

  1. Staal, F. J. T., Aiuti, A., Cavazzana, M. Autologous stem-cell-based gene therapy for inherited disorders: State of the art and perspectives. Frontiers in Pediatrics. 7, 443 (2019).
  2. Naldini, L. Genetic engineering of hematopoiesis: Current stage of clinical translation and future perspectives. EMBO Molecular Medicine. 11 (3), 9958 (2019).
  3. Srivastava, A., Shaji, R. V. Cure for thalassemia major – From allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica. 102 (2), 214-223 (2017).
  4. Venkatesan, V., Srinivasan, S., Babu, P., Thangavel, S. Manipulation of developmental gamma-globin gene expression: An approach for healing hemoglobinopathies. Molecular and Cellular Biology. 41 (1), 00253 (2020).
  5. Mazurier, F., Gan, O. I., McKenzie, J. L., Doedens, M., Dick, J. E. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood. 103 (2), 545-552 (2004).
  6. Piras, F., et al. Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Molecular Medicine. 9 (9), 1198-1211 (2017).
  7. Christopher, A. C., et al. Preferential expansion of human CD34+CD133+CD90+ hematopoietic stem cells enhances gene-modified cell frequency for gene therapy. Human Gene Therapy. 33 (3-4), 188-201 (2021).
  8. Karuppusamy, K. V., et al. The CCR5 gene edited CD34+ CD90+ hematopoietic stem cell population serves as an optimal graft source for HIV gene therapy. Frontiers in Immunology. 13, 792684 (2022).
  9. Hopman, R. K., DiPersio, J. F. Advances in stem cell mobilization. Blood reviews. 28 (1), 31-40 (2014).
  10. Hoffman, T. L. Counting Cells. Cell Biology: A laboratory handbook. 1, 21-24 (2006).
  11. Antoniani, C., et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human b-globin locus. Blood. 131 (17), 1960-1973 (2018).
  12. Azhagiri, M. K. K., Babu, P., Venkatesan, V., Thangavel, S. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Research & Therapy. 12, 500 (2021).
  13. Desjardins, P., Conklin, D. NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments. (45), e2565 (2010).
  14. Bagchi, A., et al. Direct generation of immortalized erythroid progenitor cell lines from peripheral blood mononuclear cells. Cells. 10 (3), 1-18 (2021).
  15. Ravi, R., et al. Identification of novel HPFH-like mutations by CRISPR base editing that elevates the expression of fetal hemoglobin. eLife. 11, 65421 (2020).
  16. Conant, D., et al. Inference of CRISPR edits from Sanger trace data. CRISPR Journal. 5 (1), 123-130 (2022).
  17. Shultz, L. D., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. The Journal of Immunology. 174 (10), 6477-6489 (2005).
  18. McIntosh, B. E., et al. Nonirradiated NOD,B6.SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports. 4 (2), 171-180 (2015).
  19. Leonard, A., et al. Low-dose busulfan reduces human CD34+ cell doses required for engraftment in c-kit mutant immunodeficient mice. Molecular Therapy – Methods & Clinical Development. 15, 430-437 (2019).
  20. Tateno, A., Sakai, K., Koya, N., Aoki, T. Effects of total asphyxia on the development of synaptic junctions in the brains of mice. Acta Paediatrica Japonica; Overseas Edition. 34 (1), 1-5 (1992).
  21. Audigé, A., et al. Long-term leukocyte reconstitution in NSG mice transplanted with human cord blood hematopoietic stem and progenitor cells. BMC Immunology. 18 (1), 1-15 (2017).
  22. Nimmerjahn, F., Ravetch, J. V. Fc-receptors as regulators of immunity. Advances in immunology. 96, 179-204 (2007).
  23. Boitano, A. E., et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 329 (5997), 1345-1348 (2010).
  24. Ngom, M., et al. UM171 enhances lentiviral gene transfer and recovery of primitive human hematopoietic cells. Molecular Therapy – Methods & Clinical Development. 10, 156-164 (2018).
  25. Park, Y. S., et al. Enhancement of proliferation of human umbilical cord blood-derived CD34+ hematopoietic stem cells by a combination of hyper-interleukin-6 and small molecules. Biochemistry and Biophysics Reports. 29, 101214 (2022).
  26. Aiuti, A., et al. Lentivirus-based gene therapy of hematopoietic stem cells in Wiskott-Aldrich syndrome. Science. 341 (6148), 1233151 (2013).
  27. Rai, R., et al. Optimized cell culture conditions promote ex-vivo manipulation and expansion of primitive hematopoietic stem cells for therapeutic gene editing. bioRxiv. , (2022).
  28. Wilkinson, A. C., et al. Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nature Communications. 12 (1), 1-9 (2021).
check_url/64064?article_type=t

Play Video

Cite This Article
Venkatesan, V., Christopher, A. C., Karuppusamy, K. V., Babu, P., Alagiri, M. K. K., Thangavel, S. CRISPR/Cas9 Gene Editing of Hematopoietic Stem and Progenitor Cells for Gene Therapy Applications. J. Vis. Exp. (186), e64064, doi:10.3791/64064 (2022).

View Video