Summary

秀丽隐杆线虫长寿的脂质补充和基因转录分析

Published: December 09, 2022
doi:

Summary

本协议描述了 秀丽隐杆线虫液体和平板培养物中的脂质补充方法,以及来自大量或少数蠕虫和蠕虫组织的纵向研究和基因转录分析。

Abstract

衰老是一个复杂的过程,其特征是由环境和遗传贡献引起的渐进式生理变化。脂质在构成细胞膜的结构成分、储存能量和作为信号分子方面至关重要。脂质代谢和信号传导的调节对于激活不同的长寿途径至关重要。 秀丽隐杆线虫 是一种优秀而强大的生物体,可以剖析脂质代谢和信号传导对长寿调节的贡献。多项研究描述了特定脂质分子的饮食补充如何延长 秀丽隐杆线虫 的寿命;然而,补充条件的微小差异可能会导致不同实验室的科学家之间的可重复性问题。在这里,报道了秀 丽隐杆线虫 的两种详细补充方法,采用脂质补充,将细菌接种在平板上或在液体培养物中细菌悬浮液。本文还提供了使用全蠕虫裂解物或来自少数蠕虫的解剖组织进行终身脂质补充和qRT-PCR分析的寿命测定的详细信息。结合纵向研究和脂质补充转录研究,喂养测定提供了可靠的方法来剖析脂质如何影响长寿和健康老龄化。该方法还可以适用于各种营养筛查方法,以使用少量解剖组织或少数动物来评估转录本子集的变化。

Introduction

血脂
脂质是可溶于有机溶剂但不溶于水的小疏水性或两亲性分子12。不同的脂质分子根据其链中所含的碳数量、位置、双键数量和结合结构(包括甘油或磷酸盐)相互区分。脂质在不同细胞内和跨不同细胞发挥关键作用,以调节生物体功能,包括构成膜双层、提供能量储存和充当信号分子34

首先,脂质是生物膜的结构成分,包括将内部隔室与细胞外环境分开的质膜和细胞内亚细胞膜。其次,脂质是脊椎动物和无脊椎动物能量储存的主要形式。中性脂质,包括三酰基甘油,在各种组织中长时间储存,包括脂肪组织。在线虫秀丽隐杆线虫中,肠道是主要的代谢脂肪储存器官;它的功能不仅参与营养物质的消化和吸收,还参与解毒过程,类似于哺乳动物肝细胞的活性。其他脂肪储存组织包括种系,其中脂质对卵母细胞发育至关重要,以及由皮肤样表皮细胞组成的皮下组织35。第三,近年来,越来越多的证据表明,脂质是参与细胞内和细胞外信号传导的强大信号分子,通过直接作用于多种受体,包括G蛋白偶联和核受体,或通过膜流动性调节或翻译后修饰间接作用6,789.进一步的研究将继续阐明脂质信号传导在促进长寿和健康方面的潜在分子机制。

模式生物对于解决在人类中研究的复杂特定生物学问题非常重要。例如,秀丽隐杆线虫是进行遗传分析以剖析与人类营养和疾病相关的生物过程的绝佳模型10。与人体生理学、复杂组织、行为模式和丰富的遗传操作工具相关的高度保守的分子途径使秀丽隐杆线虫成为非凡的模式生物11.例如,秀丽隐杆线虫在转发遗传筛选以识别表型特异性基因方面非常出色,以及通过RNA干扰12进行全基因组反向遗传筛选。

在实验室中,线虫生长在琼脂培养皿上,琼脂培养皿上接种了大肠杆菌草坪,提供蛋白质、碳水化合物、饱和和不饱和脂肪酸等常量营养素作为能量和构建块的来源,以及辅因子和维生素等微量营养素13。与哺乳动物类似,线虫从棕榈酸和硬脂酸(分别为饱和的16碳和18碳分子)合成脂肪酸分子,这些分子依次去饱和并拉长为多种单不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)1415,16,1718有趣的是,秀丽隐杆线虫能够从头合成所有必需的脂肪酸和参与脂肪酸生物合成、去饱和和伸长的核心酶,促进长链多不饱和脂肪酸的合成19。与其他动物物种不同,秀丽隐杆线虫可以用自己的ω-3去饱和酶将18碳和20碳ω-6脂肪酸转化为ω-3脂肪酸。此外,蠕虫具有Δ12去饱和酶,可催化油酸(OA,18:1)形成亚油酸(LA)2021。大多数动物或植物同时缺乏Δ12和ω-3去饱和酶,因此依靠膳食摄入ω-6和ω-3来获得多不饱和脂肪酸,而秀丽隐杆线虫不需要膳食脂肪酸22。缺乏功能性去饱和酶的分离突变体已被用于研究特定脂肪酸在不同生物过程中的功能,包括繁殖、生长、寿命和神经传递。单个脂肪酸对特定生物学途径的影响可以使用遗传方法和饮食补充剂来解决161723。迄今为止,脂质研究的重点是表征参与神经和发育条件下脂质合成、降解、储存和分解的基因24.然而,脂质在长寿调节中的作用才刚刚开始显现。

长寿调节中的脂质信号传导
脂质通过激活不同组织和细胞类型中的细胞信号级联,在长寿调节中起着至关重要的作用。最近的研究强调了脂质在通过脂质结合蛋白或识别膜受体 调节 转录和细胞间通讯中的积极作用25。此外,膳食脂质补充剂为剖析脂质代谢如何影响 秀丽隐杆线虫的寿命提供了极好的工具。不同的MUFAs和PUFAs已被证明通过激活转录因子来促进长寿2627

长寿模型,包括胰岛素/IGF-1信号传导和种系前体细胞的消融,与MUFA生物合成途径有关,MUFA补充剂,包括油酸,棕榈油酸和顺式牛痘,足以延长秀丽隐杆线虫的寿命26。尽管MUFA管理赋予的长寿效应需要进一步研究,但其潜在机制很可能由SKN-1 / Nrf2转录因子介导,SKN-1 / Nrf2转录因子是氧化应激反应和长寿调节的关键激活剂2829。在MUFAs中,一类称为N-酰基乙醇胺(NAEs)的特定类别的脂肪酰基乙醇酰胺在不同的机制中起着至关重要的作用,包括炎症,过敏,学习,记忆和能量代谢30。特别是,称为油酰乙醇酰胺(OEA)的脂质分子已被确定为长寿的正调节因子,通过促进脂质结合蛋白8(LBP-8)易位到细胞核中以激活核激素受体NHR-49和NHR-807。补充OEA类似物KDS-5104足以延长寿命,并诱导参与氧化应激反应和线粒体β氧化的基因表达78

同时,PUFA的作用也与长寿调节有关。给予PUFA ω-3脂肪酸α-亚麻酸(ALA)通过激活NHR-49 / PPARα,SKN-1 / NRF转录因子和诱导线粒体β氧化来促进长寿31。有趣的是,ALA的过氧化物产物,称为脂氧化物,激活SKN-1 / NRF,表明PUFAs及其氧化衍生物都可以带来长寿益处23。补充ω-6脂肪酸花生四烯酸(AA)和二同γ-亚麻酸(DGLA)通过自噬活化 延长 寿命,促进蛋白质质量控制,并导致浪费和有毒蛋白质聚集体的降解2732。最近,由脂质结合蛋白3(LBP-3)和DGLA介导的细胞非自主信号传导调节已被证明通过向神经元发送外周信号来促进长寿至关重要,这表明脂质分子在系统水平的组织间通讯中具有长期作用33。本研究报告了用接种在平板上的细菌或液体培养中的细菌悬浮液进行脂质补充的每个步骤。这些方法用于评估寿命和转录分析,使用全身内容物或来自少数蠕虫的解剖组织。以下技术可以适用于各种营养研究,并提供有效的工具来剖析脂质代谢如何影响长寿和健康老龄化。

Protocol

图1 描述了使用不同实验设置的脂质喂养示意图。 1. 脂质条件细菌的制备 通过将 5.85 g NaCl、1.0 g K 2 HPO 4 和 6.0 g KH2PO4(参见材料表)溶解在 999 mL 去离子水中来制备细菌稀释饮食限制 (BDR)碱溶液。用0.5M KOH将pH调节至6.0,然后通过0.22μm过滤器过滤。注意:BDR溶液可以在室温下储存,?…

Representative Results

在补充脂质时使用一些全虫验证转录变化为了研究从几个全蠕虫中提取和逆转录RNA到cDNA的方案是否可重现并与来自散装蠕虫的数据进行比较,采用了一种在肠道中过表达溶酶体酸性脂肪酶lipl-4的长寿命蠕虫菌株7,8,33,35。先前研究7,8</…

Discussion

脂质补充剂已被用于衰老研究,以阐明某些脂质物种对健康衰老的直接影响67,2326,2731然而,脂质补充过程可能具有挑战性,实验之间的任何不一致都可能导致不可重复的结果。在这里,记录了第一个详细的分步协议,以指导新科学家避?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 P. Svay 的维护支持。这项工作得到了NIH资助R01AG045183(MCW),R01AT009050(MCW),R01AG062257(MCW),DP1DK113644(MCW),March of Dimes基金会(MCW),韦尔奇基金会(MCW),HHMI研究员(MCW)和NIH T32 ES027801博士前学生研究员(MS)的支持。一些菌株由CGC提供,CGC由NIH研究基础设施计划办公室(P40 OD010440)资助。

Materials

1.5 mL Pestle Genesee Scientific 93-165P15 For worm grinding with Trizol
Agarose Sigma A9639-500G
AmfiRivert cDNA Synthesis Platinum Master Mix GenDEPOT R5600 For reverse transcription from bulk worm samples
Applied Biosystems QuanStudio 3 Real-Time PCR ThermoFisher A28567 For qRT-PCR
Benchmark Scientific StripSpin 12 Microcentrifuge Benchmark Scientific C1248 For spin down PCR tubes
Branson 450 Digital Sonifier, w/ 1/8" tip Branson Ultrasonic Corporation 100-132-888R
Chloroform Fisher Scientific C298-500
Cholesterol Sigma C8503-25G
Dimethyl sulfoxide (DMSO) Sigma D8418-100ML
Eppendorf 5424 R centrifuge Eppendorf 22620444R For RNA extraction
Eppendorf vapo protect mastercycler pro Eppendorf 950030010 For reverse transcription
Ethanol, Absolute (200 Proof) Fisher Scientific BP2818-500
Greiner Bio-One CELLSTAR, 12 W Plate Neta Scientific 665180 12-well plates for licuid feeding
Greiner Bio-One Petri Dish, Ps, 100 x 20 mm Neta Scientific 664161 For bacterial LB plates and worm 10-cm NGM plates
Greiner Bio-One Petri Dish, Ps, 60 x 15 mm Neta Scientific 628161 For worm6-cm NGM plates
Invitrogen nuclease-free water ThermoFisher AM9937
Isoproanol Sigma PX1835-2
Levamisole hydrochloride VWR SPCML1054
lipl-4Tg MCW Lab N/A Transgenic C. elegans
lipl-4Tg;fat-3(wa22) MCW Lab N/A Transgenic C. elegans
Luria Broth Base ThermoFisher 12795-084
Magnesium sulfate (MgSO4) Sigma M2643-500G
MicroAmp EnduraPlate Optical 96-Well Fast Clear Reaction Plate with Barcode ThermoFisher 4483354 96-well qPCR plate
MicroAmp Optical Adhesive Film Applied BioSystem 4311971 For sealing the 96-well qPCR plate
Milli-Q Advantage A10 Water Purification System Sigma Z00Q0V0WW Deionized water used to make all reagents, including buffer and cultural media, unless specified as nuclease-free water in the protocol
N2 Caenorhabditis Genetics Center N/A C. elegans wild isolate
NanoDrop ND-1000 Spectrophotometer ThermoFisher N/A For measuring RNA concentration
OP50 Caenorhabditis Genetics Center N/A Bacteria used as C. elegans food
Potasium phosphate dibasic trihydrate (K2HPO4·3H2O) Sigma P5504-1KG
Potasium phosphate monobasic (KH2PO4) Sigma P0662-2.5KG
Power SYBR Green cells-to-Ct kit ThermoFisher 4402953 For reverse transcription and qPCR from a few worms or worm tissue
Power SYBR Green Master Mix ThermoFisher 4367659 For qPCR from bulk worm samples
Pure Bright germicidal ultra bleach  KIK International LLC. 59647210143 6% house bleach For worm egg preparation
Pyrex spot plate with nine depressions Sigma CLS722085-18EA Watch glass for dissecting the worms
RNaseZap RNase Decontamination Solution ThermoFisher AM9780
Sodium cloride (NaCl) Sigma S7653-1KG
Sodium hydroxide (NaOH) Sigma SX0590-3
Sodium phosphate dibasic heptahydrate (Na2HPO4·7H2O) Sigma S9390-1KG
Thermo Sorvall Legend Mach 1.6R Centrifuge Thermo 7500-4337 For bacteria collection
Thermo Sorvall ST 8 centrifuge Thermo 7500-7200 For worm egg preparation
TRIzol Reagent TheroFisher 15596018 RNA extraction reagent
Turbo DNA-free kit ThermoFisher AM1907 For removing DNA contamination in RNA extractions
Vortexer 59 Denville Scientific INV S7030
VWR Disposable Pellet Mixers and Cordless Motor VWR 47747-370 For worm grinding with Trizol
VWR Kinetic Energy 26 Joules Mini Centrifuge C1413 V-115 VWR N/A For worm collection. Discontinued model, a similar one available at VWR with Cat# 76269-064
Worm picker WormStuff 59-AWP

References

  1. Fahy, E., et al. Update of the LIPID MAPS comprehensive classification system for lipids 1. Journal of Lipid Research. 50, 9-14 (2009).
  2. Liebisch, G., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. Journal of Lipid Research. 61 (12), 1539-1555 (2020).
  3. Mutlu, A. S., Duffy, J., Wang, M. C. Lipid metabolism and lipid signals in aging and longevity. Developmental Cell. 56 (10), 1394-1407 (2021).
  4. Kimura, T., Jennings, W., Epand, R. M. Roles of specific lipid species in the cell and their molecular mechanism. Progress in Lipid Research. 62, 75-92 (2016).
  5. Duffy, J., Mutlu, A. S., Wang, M. C., Olsen, A., Gill, M. Lipid Metabolism, Lipid Signalling and Longevity. Ageing: Lessons from C. elegans. Healthy Ageing and Longevity. , 307-329 (2017).
  6. Lesa, G. M., et al. Long chain poly-unsaturated fatty acids are required for efficient neurotransmission in C. elegans. Journal of Cell Science. 116 (24), 4965-4975 (2003).
  7. Folick, A., et al. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science. 347 (6217), 83-86 (2015).
  8. Ramachandran, P. V., et al. Lysosomal signaling promotes longevity by adjusting mitochondrial activity. Developmental Cell. 48 (5), 685-696 (2019).
  9. Byrne, E. F. X., et al. Structural basis of Smoothened regulation by its extracellular domains. Nature. 535 (7613), 517-522 (2016).
  10. Corsi, A. K., Wightman, B., Chalfie, M. A. Transparent window into biology: a primer on Caenorhabditis elegans. Genetics. 200 (2), 387-407 (2015).
  11. Nigon, V. M., Félix, M. -. A. History of research on C. elegans and other free-living nematodes as model organisms. WormBook. , 1-84 (2017).
  12. Kutscher, L. M., Shaham, S. Forward and reverse mutagenesis in C. elegans. WormBook. , 1-26 (2014).
  13. Brooks, K. K., Liang, B., Watts, J. L. The influence of bacterial diet on fat storage in C. elegans. PloS ONE. 4 (10), 7545 (2009).
  14. Brock, T. J., Browse, J., Watts, J. L. Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics. 176 (2), 865-875 (2007).
  15. Brock, T. J., Browse, J., Watts, J. L. Genetic regulation of unsaturated fatty acid composition in C. elegans. PloS Genetics. 2 (7), 108 (2006).
  16. Watts, J. L., Phillips, E., Griffing, K. R., Browse, J. Deficiencies in C20 poly-unsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants. Genetics. 163 (2), 581-589 (2003).
  17. Watts, J. L., Browse, J. Genetic dissection of poly-unsaturated fatty acid synthesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences. 99 (9), 5854-5859 (2002).
  18. Watts, J. L., Browse, J. A. Palmitoyl-CoA-specific Δ9 fatty acid desaturase from Caenorhabditis elegans. Biochemical and Biophysical Research Communications. 272 (1), 263-269 (2000).
  19. Watts, J. L. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends in Endocrinology & Metabolism. 20 (2), 58-65 (2009).
  20. Peyou-Ndi, M. M., Watts, J. L., Browse, J. Identification and characterization of an animal Δ12 fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics. 376 (2), 399-408 (2000).
  21. Spychalla, J. P., Kinney, A. J., Browse, J. Identification of an animal ω-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proceedings of the National Academy of Sciences. 94 (4), 1142-1147 (1997).
  22. Watts, J. L., Browse, J. Isolation and characterization of a Δ5-fatty acid desaturase from Caenorhabditis elegans. Archives of Biochemistry and Biophysics. 362 (1), 175-182 (1999).
  23. Deline, M. L., Vrablik, T. L., Watts, J. L. Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans. Journal of Visualized Experiments. (81), e50879 (2013).
  24. Estes, R. E., Lin, B., Khera, A., Davis, M. Y. Lipid metabolism influence on neurodegenerative disease progression: is the vehicle as important as the cargo. Frontiers in Molecular Neuroscience. 14, 788695 (2021).
  25. Sunshine, H., Iruela-Arispe, M. L. Membrane lipids and cell signaling. Current Opinion in Lipidology. 28 (5), 408-413 (2017).
  26. Han, S., et al. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature. 544 (7649), 185-190 (2017).
  27. O’Rourke, E. J., Kuballa, P., Xavier, R., Ruvkun, G. ω-6 Poly-unsaturated fatty acids extend life span through the activation of autophagy. Genes & Development. 27 (4), 429-440 (2013).
  28. Steinbaugh, M. J., et al. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife. 4, 07836 (2015).
  29. Blackwell, T. K., Steinbaugh, M. J., Hourihan, J. M., Ewald, C. Y., Isik, M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radical Biology and Medicine. 88, 290-301 (2015).
  30. Ezzili, C., Otrubova, K., Boger, D. L. Fatty acid amide signaling molecules. Bioorganic & Medicinal Chemistry Letters. 20 (20), 5959-5968 (2010).
  31. Qi, W., et al. The ω-3 fatty acid α-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPARα and oxidation to oxylipins. Aging Cell. 16 (5), 1125-1135 (2017).
  32. Shemesh, N., Meshnik, L., Shpigel, N., Ben-Zvi, A. Dietary-induced signals that activate the gonadal longevity pathway during development regulate a proteostasis switch in Caenorhabditis elegans adulthood. Frontiers in Molecular Neuroscience. 10, 254 (2017).
  33. Savini, M., et al. Lysosome lipid signalling from the periphery to neurons regulates longevity. Nature Cell Biology. 24 (6), 906-916 (2022).
  34. Stiernagle, T. Maintenance of C. elegans. WormBook. , (2006).
  35. Wang, M. C., O’Rourke, E. J., Ruvkun, G. Fat metabolism links germline stem cells and longevity in C. elegans. Science. 322 (5903), 957-960 (2008).
  36. Jacob, T. C., Kaplan, J. M. The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. The Journal of Neuroscience. 23 (6), 2122-2130 (2003).
  37. Kass, J., Jacob, T. C., Kim, P., Kaplan, J. M. The EGL-3 proprotein convertase regulates mechanosensory responses of Caenorhabditis elegans. The Journal of Neuroscience. 21 (23), 9265-9272 (2001).
  38. Bael, S. V., et al. Mass spectrometric evidence for neuropeptide-amidating enzymes in Caenorhabditis elegans. Journal of Biological Chemistry. 293 (16), 6052-6063 (2018).
  39. Fu, D., et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. Journal of the American Chemical Society. 136 (24), 8820-8828 (2014).
check_url/64092?article_type=t

Play Video

Cite This Article
Savini, M., Lee, Y., Wang, M. C., Zhou, Y. Lipid Supplementation for Longevity and Gene Transcriptional Analysis in Caenorhabditis elegans. J. Vis. Exp. (190), e64092, doi:10.3791/64092 (2022).

View Video