Summary

成人皮层的器官型培养作为人类干细胞移植和验证的 离体 模型

Published: December 09, 2022
doi:

Summary

该协议描述了成人皮层的长期器官型培养与诱导多能干细胞衍生皮质祖细胞的 离体 皮质内移植相结合,这提供了一种新方法来进一步测试基于干细胞的治疗人类神经退行性疾病。

Abstract

神经退行性疾病在症状和细胞影响方面是常见且异质的,由于缺乏完全模仿人类疾病的适当动物模型以及死后人类脑组织的可用性差,他们的研究变得复杂。成人神经组织培养为研究神经系统疾病的不同方面提供了可能性。分子,细胞和生化机制可以很容易地在这个系统中解决,以及测试和验证药物或不同的治疗方法,如基于细胞的疗法。该方法结合了从接受切除手术的癫痫患者获得的成人皮层的长期器官型培养物,以及诱导多能干细胞来源的皮质祖细胞的 体外 皮质移植。该方法将允许研究细胞存活,神经元分化,突触输入和输出的形成以及移植到完整的成人皮质组织后人类来源细胞的电生理特性。这种方法是开发3D人类疾病建模平台之前的重要一步,该平台将使基础研究更接近基于干细胞的治疗的临床转化,用于患有不同神经系统疾病的患者,并允许开发用于重建受损神经回路的新工具。

Introduction

神经退行性疾病,如帕金森病、阿尔茨海默病或缺血性中风,是一组具有神经元功能障碍或死亡共同特征的疾病。它们在受影响的大脑区域和神经元群体方面是异质的。不幸的是,由于缺乏模仿人脑中发生的事情的动物模型,这些疾病的治疗方法很少或疗效有限12。干细胞疗法是大脑再生最有前途的策略之一3。近年来,从不同来源的干细胞中产生神经元祖细胞已经有了很大的发展45。最近的出版物表明,人类诱导多能干(iPS)细胞衍生的长期自我更新神经上皮样干(lt-NES)细胞,遵循皮质分化方案,并在缺血性中风影响躯体感觉皮层的大鼠模型中进行皮质内移植后,产生成熟的皮质神经元。此外,移植物衍生的神经元接收来自宿主神经元的传入和传出突触连接,显示它们整合到大鼠神经元网络中67。移植物来源的轴突被髓鞘化,发现在大鼠大脑的不同区域,包括梗死周围区域、胼胝体和对侧躯体感觉皮层。最重要的是,iPS细胞衍生的移植逆转了中风动物的运动缺陷7

即使动物模型有助于研究移植存活,神经元整合以及移植细胞对运动和认知功能的影响,该系统中也缺少有关人类细胞(移植物 – 宿主)之间相互作用的信息89。出于这个原因,这里描述了一种长期人脑器官型培养与人iPS细胞来源神经元祖细胞离移植的组合方法。从神经外科切除中获得的人脑器官型培养物是与大脑的生理相关的3D模型,使研究人员能够增加对人类中枢神经系统回路的理解以及测试人类脑部疾病治疗的最准确方法。然而,在这种情况下还没有进行足够的研究,在大多数情况下,已经使用了人类海马脑器官型培养物1011。大脑皮层受到几种神经退行性疾病的影响,例如缺血性中风12 或阿尔茨海默病13,因此拥有一个人类皮质 3D 系统非常重要,该系统使我们能够扩展我们的知识并测试和验证不同的治疗策略。过去几年的几项研究使用成人皮质(hACtx)组织的培养物来模拟人类脑部疾病14,1516171819;然而,在干细胞治疗方面可获得的信息有限。两项研究已经证明了此处描述的系统的可行性。2018年,用不同转录因子编程并移植到hACtx组织中的人类胚胎干细胞被证明会产生成熟的皮质神经元,这些神经元可以整合到成人皮质网络中20。2020 年,将 lt-NES 细胞移植到人类器官型系统中揭示了它们分化成具有功能神经元电生理特性的成熟、层特异性皮质神经元的能力。移植神经元与成人脑切片中的人类皮质神经元建立了传入和传出突触接触,狂犬病病毒逆行单突触追踪、全细胞膜片钳记录和免疫电子显微镜证实了这一点21

Protocol

该协议遵循瑞典隆德区域伦理委员会批准的指南(道德许可证号 2021-07006-01)。从接受颞叶癫痫择期手术的患者获得健康的新皮质组织。获得所有患者的知情同意。 注意:无论其大小如何,所有获得的组织都经过处理。然而,小于 1-1.5 mm3 的组织在技术上具有挑战性,难以处理和用振动切片机切片。 1. 组织收集、维护、切割和电镀 <…

Representative Results

按照所描述的方案,如上所述,收集和处理来自颞叶癫痫患者的hACtx组织。在培养24小时后固定几片以研究宿主组织的起点。对不同神经细胞群的分析,如神经元(表达NeuN和Map2,图1A),少突胶质细胞(Olig2和MBP,图1B)和星形胶质细胞(人类特异性GFAP,也称为STEM123,图1C)显示组织的最佳保存。 下一步是研…

Discussion

获得足够高质量的hACtx切片是该协议中最关键的一步皮质组织是从接受切除手术的癫痫患者获得的24。切除组织的质量以及切除和培养之间的组织暴露时间至关重要;组织从手术室转移到实验室并切割的速度越快,器官型培养就越理想。理想情况下,应在收集后的最初几个小时内切割组织并将其转移到细胞培养实验室。在此过程中组织的氧合也提高了切片的质量。?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了瑞典研究委员会,瑞典脑基金会,瑞典中风基金会,斯科讷地区,Thorsten and Elsa Segerfalk基金会以及瑞典政府战略研究领域倡议(StemTherapy)的资助。

Materials

Tissue Cutting and electrophysiology
Adenosine 5'-triphosphate magnesium salt Sigma A9187
Bath temperature controller  Luigs & Neumann TC0511354
Calcium Chloride dihydrate Merck 102382
Carbogen gas Air Liquide NA
Cooler Julaba FL 300 9661012.03
D-(+)Glucose Sigma-Aldrich G7021
Double Patch-Clamp amplifier HEKA electronic EPC10
Guanosine 5'-Triphosphate disodium salt Millipore 371701
HEPES AppliChem A1069
Magnesium Chloride hexahydrate Sigma-Aldrich M2670
Magnesium Sulfate heptahydrate Sigma-Aldrich 230391
Patchmaster HEKA electronic Patchmaster 2×91
Pipette Puller Sutter P-2000
Plastic Petri dish Any suitable
Potassium chloride Merck 104936
Potassium D-gluconate ThermoFisher B25135
Rubber teat + glass pipette Any suitable
Sodium Bicarbonate Sigma-Aldrich S5761
Sodium Chloride Sigma-Aldrich S7653
Sodium dihydrogen phosphate monohydrate Merck 106346
Sucrose Sigma-Aldrich S7903
Tissue adhesive: Acryl super glue Loctite 2062278
Upright microscope Olympus BX51WI 
Vibratome  Leica VT1200 S
RINSING SOLUTION
D-(+)Glucose Sigma-Aldrich G7021
HBSS (without Ca, Mg, or PhenolRed) ThermoFisher Scientific 14175095
HEPES AppliChem A1069
Penicillin-Streptomycin (10,000 U/mL) ThermoFisher Scientific 15-140-122
MANTAINANCE AND CULTURE OF HUMAN NEOCORTICAL TISSUE
6-well plate ThermoFisher Scientific 140675
Alvetex scaffold 6 well insert Reinnervate Ltd AVP004-96
B27 Supplement (50x) ThermoFisher Scientific 17504001
BrainPhys without Phenol Red StemCell technologies #05791 Referenced as neuronal medium in the text
Filter units 250 mL or 500 mL Corning Sigma CLS431096/97
Forceps Any suitable
Gentamicin (50 mg/mL) ThermoFisher Scientific 15750037
Glutamax Supplement (100x) ThermoFisher Scientific 35050061 Referenced as L-glutamine in the text
Rubber teat + Glass pipette Any suitable
GENERATION OF lt-NES cells
2-Mercaptoethanol 50 mM ThermoFisher Scientific 31350010
Animal Free Recombinant EGF Peprotech AF-100-15
B27 Suplemment (50x) Thermo Fisher Scientific 17504001
bFGF Peprotech AF-100-18B
Bovine Albumin Fraction V (7.5% solution) ThermoFisher Scientific 15260037
Cyclopamine, V. calcifornicum Calbiochem # 239803
D (+) Glucose solution (45%) Sigma G8769
Dimethyl sulfoxide (DMSO) Sigma Aldrich D2438-10mL
DMEM/F12 ThermoFisher Scientific 11320074
Dulbecco's Phosphate Buffer Saline (DPBS) Thermo Fisher Scientific 14190-144 Without calcium and magnesium
Laminin Mouse Protein, Natural Thermo Fisher Scientific 23017015
MEM Non-essential aminoacids solutions (100x) ThermoFisher Scientific 11140050
N-2 Supplement (100 x) ThermoFisher Scientific 17502001
Poly-L-Ornithine Merk P3655
Recombinant Human BMP-4 Protein R&D Systems 314-BP-010
Recombinant Human Wnt-3a Protein R&D Systems 5036-WN
Sodium Pyruvate (100 mM) ThermoFisher Scientific 11360070
Soybean Trypsin Inhibitor, powder Thermo Fisher Scientific 17075029
Sterile deionized water MilliQ MilliQ filter system
Trypsin EDTA (0.25%) Sigma T4049-500ML
EQUIPMENT FOR CELL CULTURE 
Adjustable volume pipettes 10, 100, 200, 1000 µL Eppendorf Various
Basement membrane matrix ESC-qualified (Matrigel) Corning CLS354277-1EA
Centrifuge Hettich Centrifugen Rotina 420R 5% CO2, 37 °C
Incubator ThermoForma Steri-Cult CO2 HEPA Class100
Stem cell cutting tool 0.190-0.210 mm Vitrolife 14601
Sterile tubes Sarstedt Various
Sterile Disposable Glass Pasteur Pipettes 150 mm VWR 612-1701
Sterile pipette tips 0.1-1000  µL Biotix VWR Various
Sterile Serological Pipettes 5, 10, 25, 50 mL Costar Various
T25 flasks Nunc ThermoFisher Scientific 156367
IMMUNOHISTOCHEMISTRY
488-conjugated AffinityPure Donkey anti-mouse IgG Jackson ImmunoReserach 715-545-151
488-conjugated AffinityPure Donkey anti-rabbit IgG Jackson ImmunoReserach 711-545-152
488-conjugated AffinityPure Donkey anti-chicken IgG Jackson ImmunoReserach 703-545-155
Alexa fluor 647-conjugated Streptavidin Jackson ImmunoReserach 016-600-084
Bovine Serum Albumin Jackson ImmunoReserach 001-000-162
Chicken anti-GFP Merk Millipore AB16901
Chicken anti-MAP2  Abcam ab5392
Cy3-conjugated AffinityPure Donkey anti-chicken IgG Jackson ImmunoReserach 703-165-155
Cy3-conjugated AffinityPure Donkey anti-goat IgG Jackson ImmunoReserach 705-165-147
Cy3-conjugated AffinityPure Donkey anti-mouse IgG Jackson ImmunoReserach 715-165-151
Diazabicyclooctane (DABCO) Sigma Aldrich D27802 Mounting media
Goat anti-AIF1 (C-terminal)  Biorad AHP2024
Hoechst 33342 Molecular Probes Nuclear staining
Mouse anti-MBP  BioLegend 808402
Mouse anti-SC123  Stem Cells Inc AB-123-U-050
Normal Donkey Serum Merk Millipore S30-100
Paint brush Any suitable
Paraformaldehyde (PFA) Sigma Aldrich 150127
Potassium Phospate Buffer Saline, KPBS (1x)
     Distilled water
     Potassium dihydrogen Phospate (KH2PO4) Merk Millipore 104873
     Potassium phospate dibasic (K2HPO4) Sigma Aldrich P3786
     Sodium chloride (NaCl) Sigma Aldrich S3014
Rabbit anti-NeuN  Abcam ab104225
Rabbit anti-Olig2  Abcam ab109186
Rabbit anti-TMEM119  Abcam ab185333
Sodium azide Sigma Aldrich S2002-5G
Sodium citrate
       Distilled water
       Tri-Sodium Citrate Sigma Aldrich S1804-500G
       Tween-20 Sigma Aldrich P1379
Triton X-100 ThermoFisher Scientific 327371000 
EQUIPMENT FOR IMMUNOHISTOCHEMISTRY
Confocal microscope Zeiss LSM 780
Microscope Slides 76 mm x 26 mm VWR 630-1985
Microscope Coverslips 24 mm x 60 mm Marienfeld 107242
Microscope Software Zeiss ZEN Black edition
Rubber teat + Glass pipette Any suitable

References

  1. Kuriakose, D., Xiao, Z. Pathophysiology and treatment of stroke: Present status and future perspectives. International Journal of Molecular Sciences. 21 (20), 7609 (2020).
  2. Armstrong, M. J., Okun, M. S. Diagnosis and treatment of Parkinson disease: A review. The Journal of the American Medical Association. 323 (6), 548-560 (2020).
  3. Lindvall, O., Kokaia, Z., Martinez-Derrano, A. Stem cell therapy for human neurodegenerative disorders-How to make it work. Nature Medicine. 10, 42-50 (2004).
  4. Reubinoff, B. E., et al. Neural progenitors from human embryonic stem cells. Nature Biotechnology. 19 (12), 1134-1140 (2001).
  5. Chandrasekaran, A., et al. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells. Stem Cell Research. 25, 139-151 (2017).
  6. Tornero, D., et al. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain. 140 (3), 692-706 (2017).
  7. Palma-Tortosa, S., et al. Activity in grafted human iPS cell-derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior. Proceedings of the National Academy of Sciencesof the United States of America. 117 (16), 9094-9100 (2020).
  8. Robinson, N. B., et al. The current state of animal models in research: A review. International Journal of Surgery. 72, 9-13 (2019).
  9. Akhtar, A. The flaws and human harms of animal experimentation. Cambridge Quarterly Healthcare Ethics. 24 (4), 407-419 (2015).
  10. Gonzalez-Ramos, A., et al. Human stem cell-derived GABAergic neurons functionally integrate into human neuronal networks. Scientific Reports. 11, 22050 (2021).
  11. Noraberg, J., et al. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Current Drug Targets. CNS & Neurological Disorders. 4 (4), 435-452 (2005).
  12. Delavaran, H., et al. Proximity of brain infarcts to regions of endogenous neurogenesis and involvement of striatum in ischaemic stroke. European Journal of Neurology. 20 (3), 473-479 (2013).
  13. Sabuncu, M. R., et al. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Archives of Neurology. 68 (8), 1040-1048 (2011).
  14. Eugene, E., et al. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. The Journal of Neuroscience Methods. 235, 234-244 (2014).
  15. Mendes, N. D., et al. Free-floating adult human brain-derived slice cultures as a model to study the neuronal impact of Alzheimer’s disease-associated Aβ oligomers. The Journal of Neuroscience Methods. 307, 203-209 (2018).
  16. Kalmbach, B. E., et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron. 109 (18), 2914-2927 (2021).
  17. Barth, M., et al. Microglial inclusions and neurofilament light chain release follow neuronal alpha-synuclein lesions in long-term brain slice cultures. Molecular Neurodegeneration. 16 (1), 54 (2021).
  18. Almeida, G. M., et al. Neural infection by oropouche virus in adult human brain slices induces an inflammatory and toxic response. Frontiers in Neuroscience. 15, 674576 (2021).
  19. Schwarz, N., et al. Human cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Scientific Reports. 7, 12249 (2017).
  20. Miskinyte, G., et al. Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Research & Therapy. 8 (1), 207 (2017).
  21. Gronning Hansen, M., et al. Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry. Stem Cells Translational Medicine. 9 (11), 1365-1377 (2020).
  22. Falk, A., et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One. 7 (1), 29597 (2012).
  23. Avaliani, N., et al. Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors. Stem Cells. 32 (12), 3088-3098 (2014).
  24. Engel, J., et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Epilepsia. 44 (6), 741-751 (2003).
  25. Qi, X. R., et al. Human brain slice culture: A useful tool to study brain disorders and potential therapeutic compounds. Neuroscience Bulletin. 35 (2), 244-252 (2019).
  26. Verwer, R. W., et al. Injury response of resected human brain tissue in vitro. Brain Pathology. 25 (4), 454-468 (2015).
  27. Verwer, R. W., et al. Altered loyalties of neuronal markers in cultured slices of resected human brain tissue. Brain Pathology. 26 (4), 523-532 (2016).
  28. Xu, L., Wang, J., Ding, Y., Wang, L., Zhu, Y. J. Current knowledge of microglia in traumatic spinal cord injury. Frontiers in Neurology. 12, 796704 (2021).
  29. Jones, R. S., da Silva, A. B., Whittaker, R. G., Woodhall, G. L., Cunningham, M. O. Human brain slices for epilepsy research: Pitfalls, solutions and future challenges. Journal of Neuroscience Methods. 260, 221-232 (2016).
  30. Schwarz, N., et al. Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease. Elife. 8, 48417 (2019).
  31. Lancaster, M. A., Knoblich, J. A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345 (6194), 1247125 (2014).
  32. Wang, Z., et al. Organoid technology for brain and therapeutics research. CNS Neuroscience & Therapeutics. 23 (10), 771-778 (2017).
  33. Wang, H. Modeling neurological diseases with human brain organoids. Frontiers in Synaptic Neuroscience. 10, 15 (2018).
  34. Palma-Tortosa, S., Coll-San Martin, B., Kokaia, Z., Tornero, D. Neuronal replacement in stem cell therapy for stroke: Filling the gap. Frontiers in Cell and Developmental Biology. 9, 662636 (2021).
check_url/64234?article_type=t

Play Video

Cite This Article
Palma-Tortosa, S., Martínez-Curiel, R., Aretio-Medina, C., Avaliani, N., Kokaia, Z. Organotypic Cultures of Adult Human Cortex as an Ex vivo Model for Human Stem Cell Transplantation and Validation. J. Vis. Exp. (190), e64234, doi:10.3791/64234 (2022).

View Video