Summary

核心耐力运动期间通过运动模式超声和表面肌电图获得的肌肉功能

Published: August 25, 2022
doi:

Summary

该协议同时使用运动模式超声和表面肌电图来测量核心的肌肉功能。在侧板和死虫练习的特定时间点,可以实现肌肉厚度和局部稳定器(例如,横腹、内斜)和整体移动器(例如外斜)的激活。

Abstract

运动模式(M模式)超声允许研究人员和临床医生测量肌肉厚度随时间的变化。可以在运动过程中的给定时间点测量筋膜边界之间的肌肉厚度。这个选定的时间点产生一维图像,从而实时观察解剖结构。功能运动期间使用的超声波可以称为动态超声;通过使用线性传感器、松紧带和泡沫块来确保传感器的一致放置,这是可行且可靠的。由于肌肉的重叠性质,通常使用超声检查外腹壁。表面肌电图 (sEMG) 可以补充 M 型超声成像,因为它测量肌肉激活的电表现。在核心运动期间同时使用 M 型超声和 sEMG 的证据很少。挑战核心肌肉组织的运动包括等长保持(例如侧板)以及摆动肢体运动(例如死虫)。在这项研究中,这两种仪器将同时用于测量运动期间的核心肌肉功能。超声波测量将使用线性换能器和超声单元获得,sEMG测量将从无线sEMG系统获取。为了在参与者和锻炼之间进行比较,将使用两种工具的静态锻炼起始位置的标准化方法。激活率将用于超声波,并通过将收缩厚度(运动时间点的厚度)除以静止(起始位置)厚度来计算。肌肉厚度将以厘米为单位测量,从上筋膜下缘到下上筋膜缘。这些方法旨在通过核心耐力锻炼期间的M型超声和sEMG提供创新和实用的肌肉功能测量。

Introduction

腹侧壁由横腹、内斜、外斜1组成。腹侧壁同心、偏心和等长收缩,以承受施加在身体上的力1.该肌肉群的共同收缩提供了人体中心的稳定23。这些肌肉在预防和康复下肢损伤期间很重要,因为躯干功能差与髋关节内收和膝外翻增加有关,这是下肢损伤的危险因素45。专注于加强和增加核心肌肉组织的肌肉耐力不仅可以减少下肢的危险因素,还可以减少腰痛6。最近,有人建议患有急性和慢性腰痛的人在康复中应包括躯干强化、耐力和特定的躯干肌肉激活6.特定躯干肌肉激活的一个例子是针对孤立或分组的躯干肌肉,使用共同收缩来恢复腰骨盆-髋关节区域的控制或增加协调性 6

客观测量肌肉功能的两种方法是使用运动模式(M模式)超声和表面肌电图(sEMG)。M模式超声提供记录时间内肌肉和筋膜运动的实时可视化,可以显示运动的开始和程度7。在选定的时间测量上筋膜下缘和下上筋膜缘之间的距离以获得肌肉厚度。运动特定时间点的肌肉厚度可以除以静息厚度,以达到激活比8。sEMG提供了对肌肉激活和疲劳的洞察,因为输出可以与肌肉的最大收缩进行比较9。这两种仪器和方法以前已用于测量健康和受伤个体在各种运动期间髋部肌肉激活的开始10。针对躯干,特别是侧腹壁的练习是侧板和死虫111213。侧板以侧卧姿势进行,肘部直接在肩膀下方,前臂着地,臀部抬离地面,直到脊柱处于中立位置。膝盖伸展,双脚彼此重叠9(补充图1)。死虫以仰卧位进行,双臂伸直上方,臀部和膝盖弯曲成 90° 角。当一只手臂弯曲在头顶并且对侧腿伸展时,练习就开始了。另一侧手臂和腿保持在中立位置,然后在原始移动手臂和腿返回中立位置13后弯曲和伸展(补充图2和补充图3)。

在侧板111214期间,外斜肌的激活范围为最大自愿等长收缩(MVIC)的37%至62%。在死错误期间,仅重复练习15 的 5 次,外斜的激活记录在 MVIC 的 20% 到 30% 之间。内斜腹和横腹肌,即外腹壁的深腹肌,在侧板 1214 期间激活22% 至 28% 的 MVIC。由于内斜腹和横腹的重叠性质,在sEMG收集过程中,两块肌肉已经结合14。sEMG的限制是来自相邻肌肉的串扰,其中sEMG传感器可能产生不同肌肉的输出,导致对激活的错误理解16。用超声波获得的肌肉厚度测量值可用于减轻这种限制,并且这种测量在躯干锻炼期间是可行的,例如前面提到的等距保持17

侧腹壁的肌肉厚度在侧板上被记录为收缩厚度和静息厚度之间的绝对差异。在侧板30 s时间点,内斜肌和外斜肌厚度分别增加了0.526 mm和0.205 mm,17.这些测量值是在侧板的一个时间点在亮度模式超声下记录的。B型超声通常用于评估图像前后;但是,该方法仅允许在两个时间点18进行测量。与B型超声相比,M型超声具有更大的优势,因为它可以检测整个运动过程中肌肉激活的开始以及肌肉厚度,并且可以选择任何时间点进行测量18。因此,当前协议的总体目标是在核心耐力练习期间通过M模式超声和sEMG提供创新和实用的肌肉功能测量。这有利于研究人员和临床医生了解肌肉在整个运动期间的功能,尤其是耐力性质的肌肉,而不是孤立于单个时间点的测量。

Protocol

所有人类参与者都提供了知情同意。该协议是中佛罗里达大学机构审查委员会批准的一项研究的一部分。纳入标准包括年龄在18-45岁之间,并根据ACSM指南进行身体活动(每周5天30分钟的中度至剧烈活动)19。排除标准包括过去一年内的腰痛,当前的髋关节、上肢或下肢疼痛或损伤,一年的腰部手术或下肢手术史,自我报告的平衡障碍,肌肉异常,目前怀孕或腹部有开放性伤口(<s…

Representative Results

静态运动起始位置期间超声和sEMG的测量结果如 表2所示。这些数字将用作计算活化率时的分母。前5 s、后5 s和总持续时间(60 s)的外斜、内斜和横腹的厚度值见 表3。这些数字除以 表 2 中的数字。标准化为静态的sEMG值,前5秒,最后5秒的运动起始位置和峰值活动如 表4所示。 激活率描述了与静态运动起始位置相比,运动导致…

Discussion

M型超声在选定时间内实时观察解剖结构时提供肌肉组织运动和肌肉厚度变化的开始21。M型超声结合sEMG提供了对肌肉功能的整体了解,包括电表示和视觉观察。这些仪器可以在运动期间串联使用,为研究人员提供对肌肉功能的全面了解。

超声和sEMG技术的特定培训对于产生可靠和有效的测量是必要的。与M型超声和sEMG一起使用的归一化方法需要相似,以便比较…

Disclosures

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

Alcohol prep pads Henry Schein HS1007
Amazon Basics 1/2- Inch Extra Thick Exercise Yoga Mat Amazon YM2001BK
Delsys Trigno Sensor Adhesive Interface, 4-Slot Delsys SC:F03
Delsys Trigno Wireless System Delsys T03-A16014
Galaxy Tablet S5e Samsung SM-TS20N
GE NextGen Logig e Ultrasound Unit GE Healthcare HR48382AR
Linear Array Probe GE Healthcare H48062AB
Trigno Avanti sensors Delsys T03-A16014

References

  1. Kendall, F., McCreary, E., Provance, P., Rodgers, M., Romani, W. . Muscles: Testing and Function with Posture and Pain. , (2005).
  2. Bergmark, A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavica. Supplementum. 230, 1-54 (1989).
  3. Borghuis, J., Hof, A. L., Lemmink, K. A. P. M. The importance of sensory-motor control in providing core stability. Sports Medicine. 38 (11), 893-916 (2008).
  4. Ireland, M. L., Willson, J. D., Ballantyne, B. T., Davis, I. M. Hip strength in females with and without patellofemoral pain. Journal of Orthopaedic & Sports Physical Therapy. 33 (11), 671-676 (2003).
  5. Zazulak, B. T., Hewett, T. E., Reeves, N. P., Goldberg, B., Cholewicki, J. Deficits in neuromuscular control of the trunk predict knee injury risk: prospective biomechanical-epidemiologic study. The American Journal of Sports Medicine. 35 (7), 1123-1130 (2007).
  6. George, S. Z., et al. Interventions for the management of acute and chronic low back pain: revision 2021. Journal of Orthopaedic & Sports Physical Therapy. 51 (11), (2021).
  7. Dieterich, A. V., et al. M-mode ultrasound used to detect the onset of deep muscle activity. Journal of Electromyography and Kinesiology. 25 (2), 224-231 (2015).
  8. Teyhen, D. S., et al. Abdominal and lumbar multifidus muscle size and symmetry at rest and during contracted states normative reference ranges. Journal of Ultrasound in Medicine. 31 (7), 1099-1110 (2012).
  9. Oliva-Lozano, J. M., Muyor, J. M. Core muscle activity during physical fitness exercises: A systematic review. International Journal of Environmental Research and Public Health. 17 (12), 4306 (2020).
  10. Dieterich, A., Petzke, F., Pickard, C., Davey, P., Falla, D. Differentiation of gluteus medius and minimus activity in weight bearing and non-weight bearing exercises by M-mode ultrasound imaging. Manual therapy. 20 (5), 715-722 (2015).
  11. Biscarini, A., Contemori, S., Grolla, G. Activation of scapular and lumbopelvic muscles during core exercises executed on a whole-body wobble board. Journal of Sport Rehabilitation. 28 (6), 623-634 (2019).
  12. Calatayud, J., et al. Progression of core stability exercises based on the extent of muscle activity. American Journal of Physical Medicine & Rehabilitation. 96 (10), 694-699 (2017).
  13. McGill, S. M., Karpowicz, A. Exercises for spine stabilization: motion/motor patterns, stability progressions, and clinical technique. Archives of Physical Medicine and Rehabilitation. 90 (1), 118-126 (2009).
  14. Czaprowski, D., et al. Abdominal muscle EMG-activity during bridge exercises on stable and unstable surfaces. Physical Therapy in Sport. 15 (3), 162-168 (2014).
  15. Souza, G. M., Baker, L. L., Powers, C. M. Electromyographic activity of selected trunk muscles during dynamic spine stabilization exercises. Archives of Physical Medicine and Rehabilitation. 82 (11), 1551-1557 (2001).
  16. Criswell, E. . Cram’s Introduction to Surface Electromyography. , (2010).
  17. Mirmohammad, R., Minoonejhad, H., Sheikhhoseini, R. Ultrasonographic comparison of deep lumbopelvic muscles activity in plank movements on stable and unstable surface. Physical Treatments: Specific Physical Therapy Journal. 9 (3), 147-152 (2019).
  18. Bunce, S. M., Hough, A. D., Moore, A. P. Measurement of abdominal muscle thickness using M-mode ultrasound imaging during functional activities. Manual Therapy. 9 (1), 41-44 (2004).
  19. Garber, C. E., et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise. 43 (7), 1334-1359 (2011).
  20. Vera-Garcia, F. J., Moreside, J. M., McGill, S. M. MVC techniques to normalize trunk muscle EMG in healthy women. Journal of Electromyography and Kinesiology. 20 (1), 10-16 (2010).
  21. Partner, S. L., et al. Changes in muscle thickness after exercise and biofeedback in people with low back pain. Journal of Sport Rehabilitation. 23 (4), 307-318 (2014).
  22. Devorski, L., Bazett-Jones, D., Mangum, L. C., Glaviano, N. R. Muscle activation in the shoulder girdle and lumbopelvic-hip complex during common therapeutic exercises. Journal of Sport Rehabilitation. 31 (1), 31-37 (2021).
  23. Youdas, J. W., et al. Magnitudes of muscle activation of spine stabilizers in healthy adults during prone on elbow planking exercises with and without a fitness ball. Physiotherapy Theory and Practice. 34 (3), 212-222 (2018).
  24. Ekstrom, R. A., Donatelli, R. A., Carp, K. C. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. The Journal of Orthopaedic and Sports Physical Therapy. 37 (12), 754-762 (2007).
  25. Mangum, L. C., Sutherlin, M. A., Saliba, S. A., Hart, J. M. Reliability of ultrasound imaging measures of transverse abdominis and lumbar multifidus in various positions. PM&R. 8 (4), 340-347 (2016).
  26. Mangum, L. C., Henderson, K., Murray, K. P., Saliba, S. A. Ultrasound assessment of the transverse abdominis during functional movement. Journal of Ultrasound in Medicine. 37 (5), 1225-1231 (2018).
  27. Carovac, A., Smajlovic, F., Junuzovic, D. Application of ultrasound in medicine. Acta Informatica Medica. 19 (3), 168-171 (2011).
  28. Chowdhury, R. H., et al. Surface electromyography signal processing and classification techniques. Sensors. 13 (9), 12431-12466 (2013).
  29. Tweedell, A. J., Tenan, M. S., Haynes, C. A. Differences in muscle contraction onset as determined by ultrasound and electromyography. Muscle & Nerve. 59 (4), 494-500 (2019).
check_url/64335?article_type=t

Play Video

Cite This Article
Devorski, L., Skibski, A., Mangum, L. C. Muscle Function Obtained with Motion Mode Ultrasound and Surface Electromyography during Core Endurance Exercise. J. Vis. Exp. (186), e64335, doi:10.3791/64335 (2022).

View Video