Summary

猪出血性休克模型中的无创和侵入性肾缺氧监测

Published: October 28, 2022
doi:

Summary

本文介绍的是在出血性休克猪模型中测量髓质中的肾氧合和无创尿氧分压的方案,以确定尿氧分压作为急性肾损伤 (AKI) 的早期指标和新的复苏终点。

Abstract

高达 50% 的创伤患者会出现急性肾损伤 (AKI),部分原因是严重失血后肾灌注不良。目前,AKI 的诊断依据是血清肌酐浓度较基线的变化或尿量长时间减少。不幸的是,大多数创伤患者的基线血清肌酐浓度数据不可用,目前的估计方法也不准确。此外,血清肌酐浓度可能直到受伤后24-48小时才会改变。最后,少尿必须持续至少6小时才能诊断AKI,这使得早期诊断不切实际。目前可用的AKI诊断方法对于预测创伤患者复苏期间的风险没有用。研究表明,尿氧分压 (PuO2) 可能有助于评估肾缺氧。开发了一种连接导尿管和尿液收集袋的监测器,用于无创测量 PuO2。该设备集成了一个光学氧传感器,可根据发光猝灭原理估计PuO2。此外,该设备测量尿流量和温度,后者用于调节温度变化的混杂效应。测量尿流量以补偿低尿流量期间氧气进入的影响。本文介绍了一种猪失血性休克模型,以研究无创PuO2、肾缺氧与AKI发生之间的关系。该模型的一个关键要素是超声引导的手术放置在氧探头的肾髓质中,该探头基于未出鞘的微光纤。PuO 2 也将在膀胱中测量,并与肾脏和非侵入性 PuO2 测量进行比较。该模型可用于测试 PuO 2 作为 AKI 的早期标志物,并将 PuO2 评估为出血后的复苏终点,提示终末器官而不是全身氧合。

Introduction

急性肾损伤 (AKI) 影响高达 50% 的重症监护病房收治的创伤患者1.发生 AKI 的患者往往住院和重症监护病房的住院时间更长,死亡风险3,3,4。目前,AKI 最常由肾脏疾病改善全球结局 (KDIGO) 指南定义,该指南基于血清肌酐浓度从基线或长期少尿期间的变化5。大多数创伤患者的基线肌酐浓度数据不可用,估计方程不可靠,尚未在创伤患者中得到验证6。此外,血清肌酐浓度可能直到受伤后至少24小时才会改变,从而排除了早期识别和干预7。虽然研究表明尿量是 AKI 的早期指标,而不是血清肌酐浓度,但 KDIGO 标准要求至少 6 小时的少尿,这排除了针对伤害预防的干预措施8.定义AKI的最佳每小时尿量阈值和适当的少尿持续时间也存在争议,这限制了其作为疾病早期标志物的有效性9,10。因此,目前针对 AKI 的诊断措施在创伤环境中没有用处,导致 AKI 诊断延迟,并且不能提供有关患者发生 AKI 的风险状态的实时信息。

虽然创伤环境中 AKI 的发生很复杂,并且可能与多种原因有关,例如低血容量导致的肾灌注不良、血管收缩导致的肾血流量减少、创伤相关炎症或缺血再灌注损伤,但肾缺氧是大多数 AKI11,12 的常见因素。特别是,肾脏的髓质区域极易受到创伤环境中氧气需求和供应之间的不平衡的影响,这是由于氧气输送减少和与钠重吸收相关的高代谢活动。因此,如果可以测量肾髓质氧合,则可以监测患者发生AKI的风险状态。虽然这在临床上不可行,但肾脏出口处的尿氧分压 (PuO2) 与髓质组织氧合密切相关13,14。其他研究表明,可以测量膀胱 PuO 2,并且它会响应改变髓质氧和肾盂 PuO2 水平的刺激而变化,例如肾血流量减少15,16,17。这些研究表明,PuO2 可能提示终末器官灌注,并可能有助于监测创伤环境中干预对肾功能的影响。

为了无创监测 PuO 2,开发了一种无创 PuO2 监测仪,该监测仪可以轻松连接到体外导尿管的末端。非侵入式 PuO2 监测仪由三个主要组件组成:温度传感器、发光淬灭氧传感器和基于热的流量传感器。由于每个氧传感器都是基于光学的,并且依赖于Stern-Volmer关系来量化发光和氧浓度之间的关系,因此需要温度传感器来抵消温度变化的任何潜在混杂效应。流量传感器对于量化尿量和确定尿流的方向和大小非常重要。所有三个组件均通过公、母和 T 形鲁尔锁连接器和聚氯乙烯 (PVC) 柔性管的组合连接。带有锥形连接器的一端连接到导尿管的出口,锥形连接器上带有管道的末端连接尿液收集袋连接器上的滑块。

尽管测量距离膀胱远端,但最近的一项研究表明,心脏手术期间尿 PuO2 偏低与发生 AKI18,19 的风险增加有关。同样,目前的动物模型主要集中在心脏手术和败血症期间AKI的早期检测14,20,21,22。因此,关于在创伤环境中使用这种新型设备仍然存在问题。本研究的目的是确定PuO2作为AKI的早期标志物,并研究其作为创伤患者的复苏终点的用途。本手稿描述了出血性休克的猪模型,其中包括在肾髓质中放置无创 PuO 2 监测仪、膀胱 PuO2 传感器和组织氧传感器。来自无创监测仪的数据将与膀胱 PuO2 和侵入性组织氧测量进行比较。无创监护仪还包括一个流量传感器,该传感器将有助于了解尿流速和进氧之间的关系,这降低了尿液穿过尿路时从无创 PuO2 推断肾髓质组织氧合的能力。此外,来自三个氧传感器的数据将与全身生命体征(如平均动脉压)进行比较。核心假设是无创 PuO2 数据与侵入性髓质氧含量密切相关,并将反映复苏期间的髓质缺氧。无创 PuO2 监测有可能通过更早地识别 AKI 并作为出血后提示终末器官而非全身氧合的新型复苏终点来改善创伤相关结局。

Protocol

犹他大学机构动物护理和使用委员会批准了此处描述的所有实验方案。在实验之前,共有12头体重50-75公斤,年龄在6-8个月之间的阉割雄性或非怀孕雌性约克郡猪在其围栏内适应了至少7天。在此期间,所有护理均由兽医指导,并符合《实验动物护理和使用指南》和《动物福利法条例和标准》。在诱导麻醉之前,动物禁食过夜,但允许自由饮水。 1. 传感器组件 …

Representative Results

图 1 显示了本手稿中描述的无创 PuO2 监测仪的图像。 图2 显示了在类似于所描述的猪出血模型的实验期间单个受试者的MAP和无创PuO2 测量图。在实验开始时,随着出血的开始,MAP和PuO2有所下降。在PuO2 最初下降之后,它逐渐增加,直到REBOA气球放气后。逐渐增加对应于出血引起的低血容量和主动脉闭塞导致的尿量急剧减?…

Discussion

AKI 是创伤患者的常见并发症,目前,没有经过验证的肾组织肺氧合床旁监测仪,可以更早地发现 AKI 并指导潜在的干预措施。本手稿描述了猪出血性休克模型的使用和仪器,以建立无创 PuO2 作为 AKI 的早期指标和创伤环境中的新型复苏终点。

这种猪模型的一个明显优势是能够比较三个不同位置的氧气测量值,包括直接在髓质中。虽然可以测量人体的膀胱和非侵入性PuO<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该赠款的工作由犹他大学临床和转化科学研究所通过转化和临床研究试点计划和国防部国会指导医学研究计划办公室(PR192745)资助。

Materials

1/8" PVC tubing Qosina SKU: T4307 Part of noninvasive PuO2 monitor
3/16" PVC tubing Qosina SKU: T4310 Part of noninvasive PuO2 monitor
3/8" TPE tubing  Qosina SKU: T2204 Part of noninvasive PuO2 monitor
3/32" (1), 1/8" (1), 5/32" (1) drill bit Dewalt N/A For building noninvasive PuO2 monitor
Biocompatible Glue Masterbond EP30MED Part of noninvasive PuO2 monitor
Bladder PuO2 sensor Presens DP-PSt3 Oxygen dipping probe
Bladder oxygen measurement device Presens Fibox 4 Stand-alone fiber optic oxygen meter
Chlorhexidine 4% scrub Vetone N/A For scrubbing insertion or puncture sites
Conical connector with female luer lock Qosina SKU: 51500 Part of noninvasive PuO2 monitor
Cuffed endotracheal tube Vetone 600508 For sedating the subject and providing respiratory support
Euthanasia solution (pentobarbital sodium|pheyntoin sodium) Vetone 11168 For euthanasia after completion of experiment
General purpose temperature probe, 400 series thermistor Novamed 10-1610-040 Part of noninvasive PuO2 monitor
HotDog veterinary warming system HotDog V106 For controlling subject temperature during experiment
Invasive tissue oxygen measurement device Optronix N/A OxyLite™ oxygen monitors
Invasive tissue oxygen sensor Optronix NX-BF/OT/E Oxygen/Temperature bare-fibre sensor
Isoflurane Vetone 501017 To maintain sedation throughout the experiment
Isotonic crystalloid solution HenrySchein 1537930 or 1534612 Used during resuscitation in the critical care period
Liquid flow sensor Sensirion LD20-2600B Part of noninvasive PuO2 monitor
Male luer lock to barb connector Qosina SKU: 11549 Part of noninvasive PuO2 monitor
Male to male luer connector Qosina SKU: 20024 Part of noninvasive PuO2 monitor
Norepinephrine HenrySchein AIN00610 Infusion during resuscitation
Noninvasive oxygen measurement device Presens EOM-O2-mini Electro optical module transmitter for contactless oxygen measurements
Non-vented male luer lock cap  Qosina SKU: 65418 Part of noninvasive PuO2 monitor
O2 sensor stick Presens SST-PSt3-YOP Part of noninvasive PuO2 monitor
PowerLab data acquisition platform AD Instruments N/A For data collection
REBOA catheter Certus Critical Care N/A Used in experimental protocol
Super Sheath arterial catheters (5 Fr, 7 Fr, 9 Fr) Boston Scientific C1894 for intravascular access
Suture Ethicon C013D For securing catheter to skin and closing incisions
T connector, all female luer locks Qosina SKU: 88214 Part of noninvasive PuO2 monitor

References

  1. Gomes, E., Antunes, R., Dias, C., Araújo, R., Costa-Pereira, A. Acute kidney injury in severe trauma assessed by RIFLE criteria: a common feature without implications on mortality. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 18, 1 (2010).
  2. Bihorac, A., et al. Incidence, clinical predictors, genomics, and outcome of acute kidney injury among trauma patients. Annals of Surgery. 252 (1), 158-165 (2010).
  3. Perkins, Z. B., et al. Trauma induced acute kidney injury. Plos One. 14 (1), 0211001 (2019).
  4. Lai, W. H., et al. Post-traumatic acute kidney injury: a cross-sectional study of trauma patients. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 24 (1), 136 (2016).
  5. Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clinical Practice. 120 (4), 179-184 (2012).
  6. Saour, M., et al. Assessment of modification of diet in renal disease equation to predict reference serum creatinine value in severe trauma patients: Lessons from an observational study of 775 cases. Annals of Surgery. 263 (4), 814-820 (2016).
  7. Ostermann, M., Joannidis, M. Acute kidney injury 2016: diagnosis and diagnostic workup. Critical Care. 20 (1), 299 (2016).
  8. Koeze, J., et al. Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrology. 18 (1), 70 (2017).
  9. Ralib, A., Pickering, J. W., Shaw, G. M., Endre, Z. H. The urine output definition of acute kidney injury is too liberal. Critical Care. 17 (3), 112 (2013).
  10. Ostermann, M. Diagnosis of acute kidney injury: Kidney disease improving global outcomes criteria and beyond. Current Opinion Critical Care. 20 (6), 581-587 (2014).
  11. Harrois, A., Libert, N., Duranteau, J. Acute kidney injury in trauma patients. Current Opinion Critical Care. 23 (6), 447-456 (2017).
  12. Ow, C. P. C., Ngo, J. P., Ullah, M. M., Hilliard, L. M., Evans, R. G. Renal hypoxia in kidney disease: Cause or consequence. Acta Physiologica. 222 (4), 12999 (2018).
  13. Leonhardt, K. O., Landes, R. R., McCauley, R. T. Anatomy and physiology of intrarenal oxygen tension: Preliminary study of the effets of anesthetics. Anesthesiology. 26 (5), 648-658 (1965).
  14. Stafford-Smith, M., Grocott, H. P. Renal medullary hypoxia during experimental cardiopulmonary bypass: a pilot study. Perfusion. 20 (1), 53-58 (2005).
  15. Kitashiro, S., et al. Monitoring urine oxygen tension during acute change in cardiac output in dogs. Journal of Applied Physiology. 79 (1), 202-204 (1995).
  16. Sgouralis, I., et al. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies. American Journal of Physiology. Regulatory, Integrative, and Comparative Physiology. 311 (3), 532-544 (2016).
  17. Kainuma, M., Kimura, N., Shimada, Y. Effect of acute changes in renal arterial blood flow on urine oxygen tension in dogs. Critical Care Medicine. 18 (3), 309-312 (1990).
  18. Zhu, M. Z. L., et al. Urinary hypoxia: an intraoperative marker of risk of cardiac surgery-associated acute kidney injury. Nephrology Dialysis Transplantation. 33 (12), 2191-2201 (2018).
  19. Silverton, N. A., et al. Noninvasive urine oxygen monitoring and the risk of acute kidney injury in cardiac surgery. Anesthesiology. 135 (3), 406-418 (2021).
  20. Lankadeva, Y. R., et al. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney International. 90 (1), 100-108 (2016).
  21. Evans, R. G., et al. Renal hemodynamics and oxygenation during experimental cardiopulmonary bypass in sheep under total intravenous anesthesia. American Journal of Physiology. Regulatory, Integrative, and Comparative Physiology. 318 (2), 206-213 (2020).
  22. Sgouralis, I., Evans, R. G., Layton, A. T. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat. Mathematical Medicine and Biology. 34 (3), 313-333 (2017).
  23. Lankadeva, Y. R., Kosaka, J., Evans, R. G., Bellomo, R., May, C. N. Urinary oxygenation as a surrogate measure of medullary oxygenation during angiotensin II therapy in septic acute kidney injury. Critical Care Medicine. 46 (1), 41-48 (2018).
  24. Ngo, J. P., et al. Factors that confound the prediction of renal medullary oxygenation and risk of acute kidney injury from measurement of bladder urine oxygen tension. Acta Physiologica. 227 (1), 13294 (2019).
  25. Spahn, D. R., et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Critical Care. 23 (1), 98 (2019).
  26. Legrand, M., et al. Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats. Anesthesiology. 112 (1), 119-127 (2010).
  27. Badin, J., et al. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Critical Care. 15 (3), 135 (2011).
  28. Ribeiro Junio, M. A. F., et al. The complications associated with resuscitative endovascular balloon occlusion of the aorta (REBOA). World Journal of Emergency Surgery. 13, 20 (2018).
check_url/64461?article_type=t

Play Video

Cite This Article
Lofgren, L. R., Hoareau, G. L., Kuck, K., Silverton, N. A. Noninvasive and Invasive Renal Hypoxia Monitoring in a Porcine Model of Hemorrhagic Shock. J. Vis. Exp. (188), e64461, doi:10.3791/64461 (2022).

View Video