Summary

Het beoordelen van veranderingen in synaptische plasticiteit met behulp van een wakker gesloten-hoofdletselmodel van mild traumatisch hersenletsel

Published: January 20, 2023
doi:

Summary

Hier wordt gedemonstreerd hoe een wakker gesloten-hoofdletselmodel kan worden gebruikt voor het onderzoeken van de effecten van herhaald licht traumatisch hersenletsel (r-mTBI) op synaptische plasticiteit in de hippocampus. Het model repliceert belangrijke kenmerken van r-mTBI bij patiënten en wordt gebruikt in combinatie met in vitro elektrofysiologie.

Abstract

Mild traumatisch hersenletsel (mTBI’s) zijn een veel voorkomend gezondheidsprobleem in Noord-Amerika. Er is een toenemende druk om ecologisch geldige modellen van gesloten mTBI in de preklinische setting te gebruiken om de vertaalbaarheid naar de klinische populatie te vergroten. Het awake closed-headed injury (ACHI) model maakt gebruik van een gemodificeerde gecontroleerde corticale impactor om geslotenhoofdig letsel te leveren, waardoor klinisch relevante gedragsstoornissen worden geïnduceerd zonder de noodzaak van een craniotomie of het gebruik van een verdovingsmiddel.

Deze techniek veroorzaakt normaal gesproken geen dodelijke slachtoffers, schedelbreuken of hersenbloedingen en is meer consistent met een milde verwonding. Inderdaad, de milde aard van de ACHI-procedure maakt het ideaal voor studies die repetitieve mTBI (r-mTBI) onderzoeken. Groeiend bewijs geeft aan dat r-mTBI kan resulteren in een cumulatief letsel dat gedragssymptomen, neuropathologische veranderingen en neurodegeneratie veroorzaakt. r-mTBI komt vaak voor bij sportende jongeren en deze blessures treden op tijdens een periode van robuuste synaptische reorganisatie en myelinisatie, waardoor de jongere bevolking bijzonder kwetsbaar is voor de langetermijninvloeden van r-mTBI.

Verder komt r-mTBI voor in gevallen van intiem partnergeweld, een aandoening waarvoor weinig objectieve screeningsmaatregelen bestaan. In deze experimenten werd de synaptische functie beoordeeld in de hippocampus bij juveniele ratten die r-mTBI hadden ervaren met behulp van het ACHI-model. Na de verwondingen werd een weefselsnijder gebruikt om hippocampale plakjes te maken om bidirectionele synaptische plasticiteit in de hippocampus te evalueren op 1 of 7 dagen na de r-mTBI. Over het algemeen biedt het ACHI-model onderzoekers een ecologisch geldig model om veranderingen in synaptische plasticiteit na mTBI en r-mTBI te bestuderen.

Introduction

Traumatisch hersenletsel (TBI) is een belangrijk gezondheidsprobleem, met ~ 2 miljoen gevallen in Canada en de Verenigde Staten elk jaar 1,2. TBI treft alle leeftijdsgroepen en geslachten en heeft een incidentie die groter is dan die van welke andere ziekte dan ook, met name borstkanker, aids, de ziekte van Parkinson en multiple sclerose3. Ondanks de prevalentie van TBI blijft de pathofysiologie slecht begrepen en zijn de behandelingsopties beperkt. Voor een deel komt dit omdat 85% van alle TBI’s zijn geclassificeerd als mild (mTBI), en mTBI is eerder gedacht dat het slechts beperkte en voorbijgaande gedragsveranderingen veroorzaakt zonder neuropsychiatrische gevolgen op lange termijn 4,5. Het wordt nu erkend dat mTBI-herstel weken tot jaren5,6 kan duren, ernstigere neurologische aandoeningen kan bespoedigen4, en dat zelfs herhaalde “sub-hersenschudding” -effecten de hersenen beïnvloeden7. Dit is alarmerend omdat atleten in sporten zoals hockey / voetbal >10 hoofdsub-hersenschudding hebben per wedstrijd / oefensessie 7,8,9,10.

Adolescenten hebben de hoogste incidentie van mTBI en in Canada zal ongeveer één op de 10 tieners jaarlijks medische zorg zoeken voor een sportgerelateerde hersenschudding11,12. In werkelijkheid kan elke sub-hersenschudding of mTBI diffuse schade aan de hersenen veroorzaken, en dit kan ook een meer kwetsbare toestand creëren voor latere verwondingen en / of ernstigere neurologische aandoeningen 13,14,15,16,17. In Canada wordt wettelijk erkend via de wet van Rowan dat eerder letsel de kwetsbaarheid van de hersenen voor verder letsel kan vergroten18, maar het mechanistische begrip van r-mTBI blijft jammerlijk ontoereikend. Het is echter duidelijk dat single en r-mTBI het leervermogen tijdens schooljaren19,20 kunnen beïnvloeden, geslachtsspecifieke uitkomsten 21,22,23,2 4 kunnen hebben en de cognitieve capaciteit later in het leven kunnen aantasten16,25,26. Inderdaad, cohortanalyses associëren r-mTBI vroeg in het leven sterk met dementie later op27,28. r-mTBI is ook potentieel geassocieerd met chronische traumatische encefalopathie (CTE), die wordt gekenmerkt door de accumulatie van hyperfosforyleerd tau-eiwit en progressieve corticale atrofie en versneld door significante ontsteking 27,29,30,31. Hoewel de verbanden tussen r-mTBI en CTE momenteel controversieel zijn32, zal dit model het mogelijk maken om ze in een preklinische setting in meer detail te onderzoeken.

Een mTBI wordt vaak beschreven als een “onzichtbare verwonding”, omdat het optreedt in een gesloten schedel en moeilijk te detecteren is, zelfs met moderne beeldvormingstechnieken33,34. Een nauwkeurig experimenteel model van mTBI moet zich houden aan twee principes. Ten eerste moet het de biomechanische krachten samenvatten die normaal worden waargenomen in de klinische populatie35. Ten tweede moet het model heterogene gedragsuitkomsten induceren, iets dat ook veel voorkomt in klinische populaties36,37,38. Momenteel zijn de meeste preklinische modellen ernstiger, met craniotomie, stereotaxische hoofdsteun, anesthesie en gecontroleerde corticale effecten (CCI) die aanzienlijke structurele schade en uitgebreidere gedragsstoornissen veroorzaken dan normaal klinisch wordt waargenomen33. Een andere zorg bij veel preklinische modellen van hersenschudding waarbij craniotomieën betrokken zijn, is dat deze procedure zelf ontstekingen in de hersenen veroorzaakt, en dit kan mTBI-symptomen en neuropathologie verergeren van elk volgend letsel39,40. Anesthesie introduceert ook verschillende complexe confounds, waaronder het verminderen van ontsteking 41,42,43, modulerende microgliale functie44, glutamaatafgifte 45, Ca2+ toegang via NMDA-receptoren 46, intracraniale druk en cerebraal metabolisme 47. Anesthesie introduceert verder confounds door het verhogen van de bloed-hersenbarrière (BBB) permeabiliteit, tau-hyperfosforylering en corticosteroïde niveaus, terwijl de cognitieve functie wordt verminderd 48,49,50,51. Bovendien vertegenwoordigen diffuse, geslotenhoofdige letsels de overgrote meerderheid van de klinische mTBI’s52. Ze stellen iemand ook in staat om de veelheid aan factoren die gedragsuitkomsten kunnen beïnvloeden beter te bestuderen, waaronder geslacht21, leeftijd 53, inter-letsel-interval15, ernst54 en het aantal verwondingen23.

De richting van de acceleratieve/vertragende krachten (verticaal of horizontaal) is ook een belangrijke overweging voor gedrags- en moleculaire uitkomsten. Onderzoek van Mychasiuk en collega’s hebben twee modellen van diffuse gesloten mTBI vergeleken: gewichtsval (verticale krachten) en laterale impact (horizontale krachten)55. Zowel de gedrags- als de moleculaire analyses onthulden heterogene model- en geslachtsafhankelijke uitkomsten na mTBI. Diermodellen die chirurgische ingrepen helpen vermijden, terwijl ze lineaire en rotatiekrachten bevatten, zijn dus meer representatief voor de fysiologische omstandigheden waaronder deze verwondingen normaal optreden33,56. Het ACHI-model is gemaakt als reactie op deze behoefte, waardoor de snelle en reproduceerbare inductie van mTBI bij ratten mogelijk is, terwijl procedures (d.w.z. anesthesie) worden vermeden waarvan bekend is dat ze geslachtsverschillen vertekenen57.

Protocol

Goedkeuring voor alle dierprocedures werd verstrekt door de University of Victoria Animal Care Committee in overeenstemming met de normen van de Canadian Council on Animal Care (CCAC). Alle mannelijke Long-Evans ratten werden in eigen huis gefokt of gekocht (zie de Tabel met Materialen). 1. Huisvestings- en fokomstandigheden Laat de dieren 1 week wennen aan hun huisvestingsomgeving voordat ze spenen op postnatale dag (PND) 21. Houd de ratte…

Representative Results

Het model voor wakker gesloten-hoofdletsel is een haalbare methode om r-mTBI bij juveniele ratten te induceren. Ratten blootgesteld aan r-mTBI met het ACHI-model vertoonden geen openlijke gedragstekorten. Proefpersonen in deze experimenten vertoonden op geen enkel moment tijdens de r-mTBI-procedure latentie naar rechts of apneu, wat aangeeft dat dit inderdaad een milde TBI-procedure was. Subtiele gedragsverschillen kwamen wel naar voren in het NAP; Zoals hierboven beschreven, werden de ratten gescoord op vier sensomotori…

Discussion

Het meeste preklinische onderzoek heeft modellen van mTBI gebruikt die de biomechanische krachten in de klinische populatie niet samenvatten. Hier wordt getoond hoe het ACHI-model kan worden gebruikt om r-mTBI’s te induceren bij juveniele ratten. Dit gesloten model van r-mTBI heeft aanzienlijke voordelen ten opzichte van meer invasieve procedures. Ten eerste veroorzaakt de ACHI normaal gesproken geen schedelfracturen, hersenbloedingen of sterfgevallen, die allemaal contra-indicaties zouden zijn van een “milde” TBI in kli…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We danken alle leden van het Christie Laboratory aan de Universiteit van Victoria, vroeger en nu, voor hun bijdragen aan de ontwikkeling van dit protocol. Dit project werd ondersteund met fondsen van de Canadian Institutes for Health Research (CIHR: FRN 175042) en NSERC (RGPIN-06104-2019). De figuur 1 schedelafbeelding is gemaakt met BioRender.

Materials

3D-printed helment  Designed and constructed by Christie laboratory (See Specifications in Christie et al. (2019), Current Protocols in Neuroscience) 
Agarose  Fisher Scientific (BioReagents) BP160500
Anesthesia chamber Home Made N/A Plexiglass Container
Automatic Heater Controller Warner Electric TC-324B
Axon Digidata Molecular Devices 1440A Low-noise Data Acquisition System
Balance beam  Can be constructed or purchased (100 cm long x 2 cm wide x 0.75 cm thick)
Calcium Chloride Bio Basic Canada Inc.  CD0050 For aCSF
Camera Dage MTI NC-70
Carbogen tank Praxair MM OXCD5C-K Carbon Dioxide 5%, Oxygen 95%
Clampex Software Molecular Devices Clampex 10.5 Version
Compresstome Vibrating Microtome Precisionary VF 310-0Z
Concentric Bipolar Electrode FHC Inc. CBAPC75
Dextrose (D-Glucose) Fisher Scientific (Chemical) D16-3 aCSF
Digital Stimulus Isolation Amplifier   Getting Instruments, Inc.  Model 4D
Disodium Phosphate Fisher Scientific (Chemical) S373-500 PBS
Dissection Tools
Feather Double Edge Blade Electron Microscopy Sciences 72002-10
Filter Paper Whatman 1 1001-055
Flaming/Brown Micropipette Puller Sutter Instrument P-1000
Hair Claw Clip Can be obtained from any department store
Home and Recovery Cages Normal rat cages from animal care unit.
Hum Bug Noise Eliminator Quest Scientific  726300
Isoflurane USP Fresenius Kabi CP0406V2
Isotemp 215 Digital Water Bath Fisher Scientific  15-462-15
Leica Impact One CCI unit Leica Biosystems Tip is modified to hold 7mm rubber impact tip
Long-Evans rats, male Charles River Laboratories (St. Constant, PQ)
Low-Density Foam Pad 3" polyurethane foam sheet 
Magnesium Chloride Fisher Scientific (Chemical) M33-500 aCSF
Male Long Evans Rats Charles River Laboratories Animals ordered from Charles River Laboratories, or pups bred at the University of Victoria
MultiClamp 700B Amplifier Molecular Devices Model 700B
pH Test Strips VWR Chemicals BDH BDH83931.601
Potassium Chloride Fisher Scientific (Chemical) P217-500 aCSF, PBS
Potassium Phosphate Sigma P9791-500G PBS
Push Button Controller Siskiyou Corporation  MC1000e Four-axis Closed Loop Controller Push-Button
Sample Discs ELITechGroup SS-033 For use with Vapor Pressure Osmometer
Small towel
Sodium Bicarbonate Fisher Scientific (Chemical) S233-500 aCSF
Sodium Chloride Fisher Scientific (Chemical) S271-3 For aCSF, PBS
Sodium Phosphate Fisher Scientific (Chemical) S369-500 aCSF
Soft Plastic Restraint Cones Braintree Scientific model DC-200
Stopwatch Many lab members use their iPhone for this
Table or large cart with raised edges  For NAP and ACHI
Thin Wall Borosilicate Glass (with Filament) Sutter Instrument BF150-110-10 Outside diameter: 1.5 mm; Inside diameter: 1.10 mm; Length: 10 cm
Upright Microscope Olympus Olympus BX5OWI 5x MPlan 0.10 NA Objective lens
Vapor Pressure Osmometer Vapro Model 5600 aCSF should be 300-310 mOSM
Vetbond Tissue Adhesive 3M 1469SB
Vibraplane Vibration Isolation Table Kinetic Systems 9101-01-45

References

  1. Fu, T. S., Jing, R., McFaull, S. R., Cusimano, M. D. Health & economic burden of traumatic brain injury in the emergency department. Canadian Journal of Neurological Sciences. 43 (2), 238-247 (2016).
  2. Chen, C., Peng, J., Sribnick, E., Zhu, M., Xiang, H. Trend of age-adjusted rates of pediatric traumatic brain injury in US emergency departments from 2006 to 2013. International journal of environmental research and public health. 15 (6), 1171 (2018).
  3. Prins, M., Greco, T., Alexander, D., Giza, C. C. The pathophysiology of traumatic brain injury at a glance. Disease Models & Mechanisms. 6 (6), 1307-1315 (2013).
  4. Mayer, A. R., Quinn, D. K., Master, C. L. The spectrum of mild traumatic brain injury: a review. Neurology. 89 (6), 623-632 (2017).
  5. Kara, S., et al. Less than half of patients recover within 2 weeks of injury after a sports-related mild traumatic brain injury: a 2-year prospective study. Clinical Journal of Sport Medicine. 30 (2), 96-101 (2020).
  6. Chung, A. W., Mannix, R., Feldman, H. A., Grant, P. E., Im, K. Longitudinal structural connectomic and rich-club analysis in adolescent mTBI reveals persistent, distributed brain alterations acutely through to one year post-injury. arXiv. , (2019).
  7. Crisco, J. J., et al. Frequency and location of head impact exposures in individual collegiate football players. Journal of Athletic Training. 45 (6), 549-559 (2010).
  8. Wilcox, B. J., et al. Head impact exposure in male and female collegiate ice hockey players. Journal of Biomechanics. 47 (1), 109-114 (2014).
  9. Daniel, R. W., Rowson, S., Duma, S. M. Head impact exposure in youth football. Annals of Biomedical Engineering. 40 (4), 976-981 (2012).
  10. Snowden, T., et al. Heading in the right direction: a critical review of studies examining the effects of heading in soccer players. Journal of Neurotrauma. 38 (2), 169-188 (2021).
  11. Zemek, R. L., et al. Annual and seasonal trends in ambulatory visits for pediatric concussion in Ontario between 2003 and 2013. The Journal of Pediatrics. 181, 222-228 (2017).
  12. Zhang, A. L., Sing, D. C., Rugg, C. M., Feeley, B. T., Senter, C. The rise of concussions in the adolescent population. Orthopaedic Journal of Sports Medicine. 4 (8), (2016).
  13. Broglio, S. P., Eckner, J. T., Paulson, H. L., Kutcher, J. S. Cognitive decline and aging: the role of concussive and subconcussive impacts. Exercise and Sport Sciences Reviews. 40 (3), 138 (2012).
  14. Greco, T., Ferguson, L., Giza, C., Prins, M. Mechanisms underlying vulnerabilities after repeat mild traumatic brain injuries. Experimental Neurology. 317, 206-213 (2019).
  15. Longhi, L., et al. Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery. 56 (2), 364-374 (2005).
  16. Snowden, T. M., Hinde, A. K., Reid, H. M., Christie, B. R. Does mild traumatic brain injury increase the risk for dementia? A systematic review and meta-analysis. Journal of Alzheimer’s Disease. 78 (2), 757-775 (2020).
  17. Guskiewicz, K. M., et al. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 57 (4), 719-726 (2005).
  18. McCradden, M. D., Cusimano, M. D. Staying true to Rowan’s Law: how changing sport culture can realize the goal of the legislation. Canadian Journal of Public Health. 110 (2), 165-168 (2019).
  19. Carson, J. D., et al. Premature return to play and return to learn after a sport-related concussion: physician’s chart review. Canadian Family Physician. 60 (6), 310-315 (2014).
  20. McClincy, M. P., Lovell, M. R., Pardini, J., Collins, M. W., Spore, M. K. Recovery from sports concussion in high school and collegiate athletes. Brain Injury. 20 (1), 33-39 (2006).
  21. Covassin, T., Savage, J. L., Bretzin, A. C., Fox, M. E. Sex differences in sport-related concussion long-term outcomes. International Journal of Psychophysiology. 132, 9-13 (2018).
  22. Frommer, L., et al. Sex differences in concussion symptoms of high school athletes. Journal of Athletic Training. 46 (1), 76-84 (2011).
  23. Wright, D., O’Brien, T., Shultz, S. R., Mychasiuk, R. Sex matters: Repetitive mild traumatic brain injury in adolescent rats. Annals of Clinical and Translational Neurology. 4 (9), 640-654 (2017).
  24. Stone, S., Lee, B., Garrison, J. C., Blueitt, D., Creed, K. Sex differences in time to return-to-play progression after sport-related concussion. Sports Health. 9 (1), 41-44 (2017).
  25. Cunningham, J., Broglio, S. P., O’Grady, M., Wilson, F. History of sport-related concussion and long-term clinical cognitive health outcomes in retired athletes: a systematic review. Journal of Athletic Training. 55 (2), 132-158 (2020).
  26. Montenigro, P. H., et al. Cumulative head impact exposure predicts later-life depression, apathy, executive dysfunction, and cognitive impairment in former high school and college football players. Journal of Neurotrauma. 34 (2), 328-340 (2017).
  27. Lee, E. B., et al. Chronic traumatic encephalopathy is a common co-morbidity, but less frequent primary dementia in former soccer and rugby players. Acta Neuropathologica. 138 (3), 389-399 (2019).
  28. Di Virgilio, T. G., et al. Evidence for acute electrophysiological and cognitive changes following routine soccer heading. EBioMedicine. 13, 66-71 (2016).
  29. Cherry, J. D., et al. Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathologica Communications. 4 (1), 1-9 (2016).
  30. Smith, D. H., Johnson, V. E., Stewart, W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia. Nature Reviews Neurology. 9 (4), 211 (2013).
  31. Coughlin, J. M., et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiology of Disease. 74, 58-65 (2015).
  32. Wu, L., et al. Repetitive mild closed head injury in adolescent mice is associated with impaired proteostasis, neuroinflammation, and tauopathy. Journal of Neuroscience. 42 (12), 2418-2432 (2022).
  33. Shultz, S. R., et al. The potential for animal models to provide insight into mild traumatic brain injury: translational challenges and strategies. Neuroscience & Biobehavioral Reviews. 76, 396-414 (2017).
  34. Sharp, D. J., Jenkins, P. O. Concussion is confusing us all. Practical Neurology. 15 (3), 172-186 (2015).
  35. Chen, Y., Huang, W., Constantini, S. The differences between blast-induced and sports-related brain injuries. Frontiers in Neurology. 4, 119 (2013).
  36. Collins, M. W., Kontos, A. P., Reynolds, E., Murawski, C. D., Fu, F. H. A comprehensive, targeted approach to the clinical care of athletes following sport-related concussion. Knee Surgery, Sports Traumatology, Arthroscopy. 22 (2), 235-246 (2014).
  37. Hiploylee, C., et al. Longitudinal study of postconcussion syndrome: not everyone recovers. Journal of Neurotrauma. 34 (8), 1511-1523 (2017).
  38. Rabinowitz, A. R., Fisher, A. J. Person-specific methods for characterizing the course and temporal dynamics of concussion symptomatology: a pilot study. Scientific Reports. 10 (1), 1-9 (2020).
  39. Shultz, S. R., et al. Tibial fracture exacerbates traumatic brain injury outcomes and neuroinflammation in a novel mouse model of multitrauma. Journal of Cerebral Blood Flow & Metabolism. 35 (8), 1339-1347 (2015).
  40. McDonald, S. J., Sun, M., Agoston, D. V., Shultz, S. R. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. Journal of Neuroinflammation. 13 (1), 1-14 (2016).
  41. Statler, K. D., et al. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Research. 1076 (1), 216-224 (2006).
  42. Rowe, R. K., et al. Using anesthetics and analgesics in experimental traumatic brain injury. Lab Animal. 42 (8), 286-291 (2013).
  43. Luh, C., et al. Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation. PLoS One. 6 (5), 19948 (2011).
  44. Madry, C., et al. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron. 97 (2), 299-312 (2018).
  45. Patel, P. M., Drummond, J. C., Cole, D. J., Goskowicz, R. L. Isoflurane reduces ischemia-induced glutamate release in rats subjected to forebrain ischemia. The Journal of the American Society of Anesthesiologists. 82 (4), 996-1003 (1995).
  46. Gray, J. J., Bickler, P. E., Fahlman, C. S., Zhan, X., Schuyler, J. A. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases. The Journal of the American Society of Anesthesiologists. 102 (3), 606-615 (2005).
  47. Flower, O., Hellings, S. Sedation in traumatic brain injury. Emergency Medicine International. 2012, 637171 (2012).
  48. Wagner, M., Ryu, Y. K., Smith, S. C., Mintz, C. D. Effects of anesthetics on brain circuit formation. Journal of Neurosurgical Anesthesiology. 26 (4), 358 (2014).
  49. Leikas, J. V., et al. Brief isoflurane anesthesia regulates striatal AKT-GSK3β signaling and ameliorates motor deficits in a rat model of early-stage Parkinson′ s disease. Journal of Neurochemistry. 142 (3), 456-463 (2017).
  50. Turek, Z., Sykora, R., Matejovic, M., Cerny, V. Anesthesia and the microcirculation. in Seminars in Cardiothoracic and Vascular Anesthesia. , 249-258 (2009).
  51. Yang, S., et al. Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Frontiers in Immunology. 8, 902 (2017).
  52. Bodnar, C. N., Roberts, K. N., Higgins, E. K., Bachstetter, A. D. A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. Journal of Neurotrauma. 36 (11), 1683-1706 (2019).
  53. Mannix, R., et al. Adolescent mice demonstrate a distinct pattern of injury after repetitive mild traumatic brain injury. Journal of Neurotrauma. 34 (2), 495-504 (2017).
  54. Viano, D. C., Hamberger, A., Bolouri, H., Säljö, A. Evaluation of three animal models for concussion and serious brain injury. Annals of Biomedical Engineering. 40 (1), 213-226 (2012).
  55. Mychasiuk, R., Hehar, H., Candy, S., Ma, I., Esser, M. J. The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. Journal of Neuroscience Methods. 257, 168-178 (2016).
  56. Christie, B. R., et al. A rapid neurological assessment protocol for repeated mild traumatic brain injury in awake rats. Current Protocols in Neuroscience. 89 (1), 80 (2019).
  57. Buchanan, F. F., Myles, P. S., Leslie, K., Forbes, A., Cicuttini, F. Gender and recovery after general anesthesia combined with neuromuscular blocking drugs. Anesthesia & Analgesia. 102 (1), 291-297 (2006).
  58. Zhang, L., Gurao, M., Yang, K. H., King, A. I. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model. Journal of Neuroscience Methods. 198 (1), 93-98 (2011).
  59. Kikinis, Z., et al. Diffusion imaging of mild traumatic brain injury in the impact accelerated rodent model: A pilot study. Brain Injury. 31 (10), 1376-1381 (2017).
  60. Talty, C. -. E., Norris, C., VandeVord, P. Defining experimental variability in actuator-driven closed head impact in rats. Annals of Biomedical Engineering. 50 (10), 1187-1202 (2022).
  61. Meconi, A., et al. Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats. Plos One. 13 (5), (2018).
  62. Zilles, K. . The Cortex of the Rat: a Stereotaxic Atlas. , (2012).
  63. Fontaine, C. J., et al. Impaired bidirectional synaptic plasticity in juvenile offspring following prenatal ethanol exposure. Alcoholism: Clinical and Experimental Research. 43 (10), 2153-2166 (2019).
  64. Fontaine, C. J., et al. Endocannabinoid receptors contribute significantly to multiple forms of long-term depression in the rat dentate gyrus. Learning & Memory. 27 (9), 380-389 (2020).
  65. Grafe, E. L., Wade, M. M., Hodson, C. E., Thomas, J. D., Christie, B. R. Postnatal choline supplementation rescues deficits in synaptic plasticity following prenatal ethanol exposure. Nutrients. 14 (10), 2004 (2022).
  66. Peñasco, S., et al. Intermittent ethanol exposure during adolescence impairs cannabinoid type 1 receptor-dependent long-term depression and recognition memory in adult mice. Neuropsychopharmacology. 45 (2), 309-318 (2020).
  67. Cole, J. T., et al. Craniotomy: true sham for traumatic brain injury, or a sham of a sham. Journal of Neurotrauma. 28 (3), 359-369 (2011).
  68. Long, R. P., et al. Repeated isoflurane exposures impair long-term potentiation and increase basal GABAergic activity in the basolateral amygdala. Neural Plasticity. 2016, (2016).
  69. Meehan, W. P., Mannix, R. C., O’Brien, M. J., Collins, M. W. The prevalence of undiagnosed concussions in athletes. Clinical Journal of Sport Medicine. 23 (5), 339 (2013).
  70. Moore, R. D., Lepine, J., Ellemberg, D. The independent influence of concussive and sub-concussive impacts on soccer players’ neurophysiological and neuropsychological function. International Journal of Psychophysiology. 112, 22-30 (2017).
  71. Peltonen, K., et al. On-field signs of concussion predict deficits in cognitive functioning: Loss of consciousness, amnesia, and vacant look. Translational Sports Medicine. 3 (6), 565-573 (2020).
  72. Kontos, A. P., Sufrinko, A., Sandel, N., Emami, K., Collins, M. W. Sport-related concussion clinical profiles: clinical characteristics, targeted treatments, and preliminary evidence. Current Sports Medicine Reports. 18 (3), 82-92 (2019).
  73. Eisenberg, M. A., Meehan, W. P., Mannix, R. Duration and course of post-concussive symptoms. Pediatrics. 133 (6), 999-1006 (2014).
  74. Mychasiuk, R., Farran, A., Esser, M. J. Assessment of an experimental rodent model of pediatric mild traumatic brain injury. Journal of Neurotrauma. 31 (8), 749-757 (2014).
  75. Malkesman, O., Tucker, L. B., Ozl, J., McCabe, J. T. Traumatic brain injury-modeling neuropsychiatric symptoms in rodents. Frontiers in Neurology. 4, 157 (2013).
  76. Shultz, S. R., MacFabe, D. F., Foley, K. A., Taylor, R., Cain, D. P. A single mild fluid percussion injury induces short-term behavioral and neuropathological changes in the Long-Evans rat: Support for an animal model of concussion. Behavioural Brain Research. 224 (2), 326-335 (2011).
  77. Sorge, R. E., et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods. 11 (6), 629-632 (2014).
  78. van Driel, K. S., Talling, J. C. Familiarity increases consistency in animal tests. Behavioural Brain Research. 159 (2), 243-245 (2005).
  79. Mouzon, B. C., et al. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Annals of Neurology. 75 (2), 241-254 (2014).
  80. Mannix, R., et al. Clinical correlates in an experimental model of repetitive mild brain injury. Annals of Neurology. 74 (1), 65-75 (2013).
  81. Bekhbat, M., et al. Chronic adolescent stress sex-specifically alters central and peripheral neuro-immune reactivity in rats. Brain, Behavior, and Immunity. 76, 248-257 (2019).
  82. Pyter, L. M., Kelly, S. D., Harrell, C. S., Neigh, G. N. Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats. Brain, Behavior, and Immunity. 30, 88-94 (2013).
  83. MacDougall, M. J., Howland, J. G. Acute stress, but not corticosterone, disrupts short-and long-term synaptic plasticity in rat dorsal subiculum via glucocorticoid receptor activation. Cerebral Cortex. 23 (11), 2611-2619 (2013).
  84. Ting, J. T., Daigle, T. L., Chen, Q., Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Patch-Clamp Methods and Protocols. , 221-242 (2014).
  85. Ting, J. T., Feng, G. Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behavioural Brain Research. 255, 3-18 (2013).
  86. Tanaka, Y., Tanaka, Y., Furuta, T., Yanagawa, Y., Kaneko, T. The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slices of adult mice. Journal of Neuroscience Methods. 171 (1), 118-125 (2008).
  87. Trivino-Paredes, J. S., Nahirney, P. C., Pinar, C., Grandes, P., Christie, B. R. Acute slice preparation for electrophysiology increases spine numbers equivalently in the male and female juvenile hippocampus: a DiI labeling study. Journal of Neurophysiology. 122 (3), 958-969 (2019).
  88. Bowden, J. B., Abraham, W. C., Harris, K. M. Differential effects of strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in the dentate gyrus of freely moving rats. Hippocampus. 22 (6), 1363-1370 (2012).
  89. Segev, A., Garcia-Oscos, F., Kourrich, S. Whole-cell patch-clamp recordings in brain slices. Journal of Visualized Experiments. (112), e54024 (2016).
  90. Pham, L., et al. Mild closed-head injury in conscious rats causes transient neurobehavioral and glial disturbances: a novel experimental model of concussion. Journal of Neurotrauma. 36 (14), 2260-2271 (2019).
check_url/64592?article_type=t

Play Video

Cite This Article
Christie, B. R., Gross, A., Willoughby, A., Grafe, E., Brand, J., Bosdachin, E., Reid, H. M. O., Acosta, C., Eyolfson, E. Assessing Changes in Synaptic Plasticity Using an Awake Closed-Head Injury Model of Mild Traumatic Brain Injury. J. Vis. Exp. (191), e64592, doi:10.3791/64592 (2023).

View Video