Summary

使用改良的夹心 ELISA 定量来自中性粒细胞胞外陷阱的髓过氧化物酶 DNA 和中性粒细胞弹性蛋白酶 DNA 复合物

Published: May 12, 2023
doi:

Summary

我们提出了一种改进的夹心酶联免疫吸附测定技术方案,以定量测量中性粒细胞细胞外捕获残留物的两种成分,髓过氧化物酶偶联-DNA 和中性粒细胞弹性蛋白酶偶联 DNA 复合物,来源于活化的中性粒细胞。

Abstract

某些刺激,如微生物,导致中性粒细胞释放中性粒细胞胞外陷阱(NET),其基本上是由DNA与颗粒蛋白组成的网状结构,如髓过氧化物酶(MPO)和中性粒细胞弹性蛋白(NE),以及细胞质和细胞骨架蛋白。尽管最近对NETs的兴趣有所增加,但没有灵敏,可靠的测定方法可用于在临床环境中测量NET。本文描述了一种改良的夹心酶联免疫吸附测定法,用于定量测量循环 NET 的两种成分,MPO-DNA 和 NE-DNA 复合物,它们是 NET 的特定成分,并作为 NET 的分解产物释放到细胞外空间。该测定使用用于MPO或NE的特异性单克隆抗体作为捕获抗体和DNA特异性检测抗体。MPO 或 NE 在含有 MPO-DNA 或 NE-DNA 复合物的样品初始孵育期间与捕获抗体的一个位点结合。该测定显示出良好的线性和高测定间和测定内精度。我们在16名伴有急性呼吸窘迫综合征的COVID-19患者中使用了它,发现MPO-DNA和NE-DNA的血浆浓度明显高于从健康对照获得的血浆。该检测法是研究人血浆和培养上清液中NET特征的可靠、高灵敏度和有用的方法。

Introduction

本文概述了一种定量生物体液中中性粒细胞细胞外捕获 (NET) 形成的方法,方法是使用夹心酶联免疫吸附测定法 (ELISA) 检测髓过氧化物酶 (MPO) 和中性粒细胞弹性蛋白酶 (NE) 与 DNA 1,2 的复合物。NET由装饰有源自中性粒细胞颗粒3,4的抗菌蛋白酶的DNA骨架组成。MPO-DNA和NE-DNA复合物都是NET的重要和特异性成分,并作为NETs的分解产物释放到细胞外空间3,4

NETs除了在抗菌防御中起重要的生理作用3外,还具有多种病理作用4,5包括促进血栓形成6 和脓毒症恶化7。因此,NET最近引起了人们的关注。然而,由于缺乏灵敏、可靠的定量测定方法,NET的 体内 定量已被证明具有挑战性。

有几种方法可用,包括通过荧光显微镜8,9和流式细胞术10直接测量NET,以及间接测量循环游离DNA,核小体和瓜氨酸组蛋白H3,但每种方法都有自己的优点和局限性11。尽管免疫荧光显微镜方法特定于NETs,并且清楚地显示了NET的定位和形成程度,但样本仅限于活检组织和分泌物质。此外,该方法需要由熟练的研究人员进行,并且需要很长时间才能获得结果。通过流式细胞术测量NET相关成分的循环水平很容易,并且可以快速提供结果;但是,该方法并非特定于NETs 12

我们13 和其他人 1,2 开发了一种高度灵敏且可靠的检测方法,用于使用改进的 ELISA 技术测量人血浆中循环的 NET 组分、MPO 偶联或 NE 偶联 DNA,该技术使用 MPO 或 NE 的特异性抗体作为捕获抗体和 DNA 特异性检测抗体。该测定法还可用于离体鉴定活化的中性粒细胞响应佛波醇 12-肉豆蔻酸 13-乙酸酯 (PMA) 刺激释放的细胞培养上清液中的 NET 组分。

Protocol

这项研究是根据《赫尔辛基宣言》进行的,并得到了爱知医科大学机构审查委员会的批准(2017-H341,2019-H137)。从每个参与者那里获得了书面知情同意。 1. 试剂制备 注意:为了进行夹心ELISA测定,试剂的制备如下所述。 包衣缓冲液:要制备0.1 mol/L碳酸氢盐缓冲液,称取10.6 g无水碳酸钠(分子量,106 g/mol)和8.4 g碳酸氢钠(分子量?…

Representative Results

该方法使用具有抗MPO、抗NE和抗DNA单克隆抗体的夹心ELISA来测量MPO相关和NE相关DNA(图1)。在该方法中,微量滴定板的孔涂有MPO特异性或NE特异性单克隆抗体,以捕获DNA相关的MPO和DNA相关的NE,以及非DNA相关的MPO和NE。为了计算测定内变异系数(CV),在同一板内对从COVID-19和健康对照患者收集的30个样本进行重复测量,并将%CV计算为重复测量的平均值;为了计算测定间CV(即板对…

Discussion

我们已经描述了一种夹心ELISA方法,其中MPO或NE在含有MPO-DNA或NE-DNA复合物的样品的初始孵育期间与捕获抗体的一个位点结合。洗涤后,通过将样品与过氧化物酶相关的抗DNA单克隆抗体孵育来完成“三明治”。去除未结合的二抗后,通过添加显色ABTS过氧化物酶底物来检测结合的过氧化物酶偶联物,其产生可溶性终产物,可以在405nm处通过分光光度法读取。良好的线性、较高的测定间和测定内精密度?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢Huq Muhammad Aminul博士在审阅手稿时提供的帮助。

Materials

1-Step Polymorphs Accurate Chemical and Scientific Corporation AN221725 Isolation of PMN's from human blood.
96-well microtiter plate Thermo Fisher Scientific 467466 flat bottom
ABTS buffer solution Sigma-Aldrich Merck 11 204 530 001 Contains sodium perborate, citric acid, and disodium hydrogen phosphate. 
ABTS tablets Sigma-Aldrich Merck 11 204 521 001  Each tablet contains 5 mg ABTS substrate and 60 mg vehicle substances.
Adhesive plastic cover, Axygen Thermo Fisher Scientific 14222348
Anti-MPO antibody Sigma-Aldrich Merck  07-496-I Store at 2-8 °C. stable for 1 year. Host species is rabbit.
Anti-NE antibody, clone AHN-10 Sigma-Aldrich Merck MABS461 Store at 2-8 °C. stable for 1 year. Host species is mouse.
Bovine serum albumin Biomedical Science BR-220700081 Albumin from bovine fraction V. Store at 2–8 °C. stable for 2 year.
DNase I New England BioLabs M0303M Store at -20 °C
IgG, rabbit, Isotype Control GENETEX, Inc. GTX35035 Store as concentrated solution at 2–8 °C.
IgG1, mouse Isotype Control, clone Ci4 Merck  MABC002 Store as concentrated solution at 2–8 °C.
Lithium heparin blood collection tube Becton Dickinson and Company
Microplate mixer As one corporation NS-P
Microplate Reader Molecular Devices SpectraMax 190  Any microplate plate reader capable of reading wavelengths from 405–490 nm can use.
Microplate reader application Molecular Devices SoftMax pro
Peroxidase-conjugated anti-DNA antibody, Cell death Detection ELISA Roche Diagnostics 1154467500  bottle 2. Store at 2–8 °C. stable for 1 year.
Phorbol 12-myristate 13-acetate Sigma-Aldrich Merck P8139 Activation of PMN's from human blood.
Phosphate buffered solution Takara Bio T9181 Store at room temperature. Stable for 6 months.
SigmaPlot v14.5  Systat Software Inc. San Jose, CA, USA
Sodium azide Fujifilm Wako Chemicals 190-14901 Store at room temperature.
t-Octylphenoxypolyethoxyethanol, Polyethylene glycol tert-octylphenyl ether Fujifilm Wako Chemicals 9002-93-1 Store at room temperature.

References

  1. Sil, P., Yoo, D. G., Floyd, M., Gingerich, A., Rada, B. High throughput measurement of extracellular DNA release and quantitative NET formation in human neutrophils in vitro. Journal of Visualized Experiments. (112), e52779 (2016).
  2. Yoo, D. G., Floyd, M., Winn, M., Moskowitz, S. M., Rada, B. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes. Immunology Letters. 160 (2), 186-194 (2014).
  3. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303 (5663), 1532-1535 (2004).
  4. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology. 18, 134-147 (2018).
  5. Chamardani, T. M., Amiritavassoli, S. Inhibition of NETosis for treatment purposes: Friend or foe. Molecular and Cellular Biochemistry. 477 (3), 673-688 (2022).
  6. Rao, A. N., Kazzaz, N. M., Knight, J. S. Do neutrophil extracellular traps contribute to the heightened risk of thrombosis in inflammatory diseases. World Journal of Cardiology. 7 (12), 829-842 (2015).
  7. Sørensen, O. E., Borregaard, N. Neutrophil extracellular traps – The dark side of neutrophils. Journal of Clinical Investigation. 126 (5), 1612-1620 (2016).
  8. Abrams, S. T., et al. A novel assay for neutrophil extracellular traps (NETs) formation independently predicts disseminated intravascular coagulation and mortality in critically ill patients. American Journal of Respiratory and Critical Care Medicine. 200 (7), 869-880 (2019).
  9. Brinkmann, V., Goosmann, C., Kühn, L. I., Zychlinsky, A. Automatic quantification of in vitro NET formation. Frontiers in Immunology. 3, 413 (2012).
  10. Zhao, W., Fogg, D. K., Kaplan, M. J. A novel image-based quantitative method for the characterization of NETosis. Journal of Immunological Methods. 423, 104-110 (2015).
  11. Masuda, S., et al. NETosis markers: Quest for specific, objective, and quantitative markers. Clinica Chimica Acta. 459, 89-93 (2016).
  12. Rada, B. Neutrophil extracellular traps. Methods in Molecular Biology. 1982, 517-528 (2019).
  13. Kano, H., Huq, M. A., Tsuda, M., Noguchi, H., Takeyama, N. Sandwich ELISA for circulating myeloperoxidase- and neutrophil elastase-DNA complexes released from neutrophil extracellular traps. Advanced Techniques in Biology & Medicine. 5 (1), 1000196 (2016).
  14. Prevel, R., et al. Plasma markers of neutrophil extracellular trap are linked to survival but not to pulmonary embolism in COVID-19-related ARDS patients. Frontiers in Immunology. 13, 851497 (2022).
  15. Schechter, M. C., et al. et al. extracellular trap (NET) levels in human plasma are associated with active TB. PLoS One. 12, e0182587 (2017).
  16. Papayannopoulos, V., Metzler, K. D., Hakkim, A., Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. Journal of Cell Biology. 191 (3), 677-691 (2010).
  17. Gupta, S., Chan, W., Zaal, K. J., Kaplan, M. J. A high-throughput real-time imaging technique to quantify NETosis and distinguish mechanisms of cell death in human neutrophils. Journal of Immunology. 200 (2), 869-879 (2018).
  18. Li, M., Lin, C., Leso, A., Nefedova, Y. Quantification of citrullinated histone H3 bound DNA for detection of neutrophil extracellular traps. Cancers. 12 (11), 3424 (2020).
  19. Thålin, C., et al. Quantification of citrullinated histones: Development of an improved assay to reliably quantify nucleosomal H3Cit in human plasma. Journal of Thrombosis and Haemostasis. 18 (10), 2732-2743 (2020).
  20. Li, P., et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. Journal of Experimental Medicine. 207 (9), 1853-1862 (2010).
  21. Zuo, Y., et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 5 (11), e138999 (2020).
  22. Masso-Silva, J. A., et al. Increased peripheral blood neutrophil activation phenotypes and neutrophil extracellular trap formation in critically ill Coronavirus disease 2019 (COVID-19) patients: A case series and review of the literature. Clinical Infectious Diseases. 74 (3), 479-489 (2022).
  23. Gong, F. C., et al. Identification of potential biomarkers and immune features of sepsis using bioinformatics analysis. Mediators of Inflammation. 2020, 3432587 (2020).
  24. Almansa, R., et al. Transcriptomic correlates of organ failure extent in sepsis. Journal of Infection. 70 (5), 445-456 (2015).
check_url/64644?article_type=t

Play Video

Cite This Article
Islam, M. M., Salma, U., Irahara, T., Watanabe, E., Takeyama, N. Quantifying Myeloperoxidase-DNA and Neutrophil Elastase-DNA Complexes from Neutrophil Extracellular Traps by Using a Modified Sandwich ELISA. J. Vis. Exp. (195), e64644, doi:10.3791/64644 (2023).

View Video