Summary

NAD(P)H Fluorescence Lifetime Imaging for the Metabolic Analysis of the Murine Intestine and Parasites During Nematode Infection

Published: September 01, 2023
doi:

Summary

The present protocol describes the NAD(P)H fluorescence lifetime imaging of an explanted murine intestine infected with the natural parasite Heligmosomoides polygyrus, which allows one to investigate metabolic processes both in host and parasite tissues in a spatially resolved manner.

Abstract

Parasites generally have a negative effect on the health of their host. They represent a huge health burden, as they globally affect the health of the infested human or animal in the long term and, thus, impact agricultural and socio-economic outcomes. However, parasite-driven immune-regulatory effects have been described, with potential therapeutic relevance for autoimmune diseases. While the metabolism in both the host and parasites contributes to their defense and is the basis for nematode survival in the intestine, it has remained largely understudied due to a lack of adequate technologies. We have developed and applied NAD(P)H fluorescence lifetime imaging to explanted murine intestinal tissue during infection with the natural nematode Heligmosomoides polygyrus to study the metabolic processes in both the host and parasites in a spatially resolved manner. The exploitation of the fluorescence lifetime of the co-enzymes nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), hereafter NAD(P)H, which are preserved across species, depends on their binding status and the binding site on the enzymes catalyzing metabolic processes. Focusing on the most abundantly expressed NAD(P)H-dependent enzymes, the metabolic pathways associated with anaerobic glycolysis, oxidative phosphorylation/aerobic glycolysis, and NOX-based oxidative burst, as a major defense mechanism, were distinguished, and the metabolic crosstalk between the host and parasite during infection was characterized.

Introduction

Parasitic infections impose a huge burden on human health1,2. A correlation between the rise in autoimmune diseases and the decline in parasitic infections has been observed in industrial countries. It is known that parasites can have beneficial effects by dampening excessive host immune responses. H. polygyrus is a natural parasite found in the intestine in rodents, and this parasite is known to induce immunoregulatory mechanisms that reduce the anti-parasitic immune response of the host via, among other mechanisms, the induction of regulatory T cells (Treg) in the infected host3,4,5,6,7,8,9,10,11. Those regulatory mechanisms are especially of interest in degenerative autoimmune diseases.

The analysis of the metabolic crosstalk between the host and intestinal nematodes remains widely neglected, although metabolism plays an important role in both the host and parasites for defense, survival, and function. We propose to adapt and apply NADH and NADPH fluorescence lifetime imaging upon two-photon excitation, a technology already widely used in different physiological and pathophysiological situations in mammalian cells and tissues12, to investigate host and nematode metabolism in living tissues correlatively.

NADH and NADPH, referred to as NAD(P)H, are ubiquitous molecules that are preserved in all cell-based lifeforms and play the role of co-enzymes in various metabolic pathways. For instance, they are involved in energy production, reductive biosynthesis, and NADPH oxidase-mediated reactive oxygen species (ROS) production, which are mainly linked to cell defense and cell communication13,14,15,16,17,20. Both co-enzymes emit fluorescence at ~450 nm upon two-photon excitation at 750 nm, thus allowing for marker-free metabolic imaging in cells and tissues19,21. Exciting both NADH and NADPH with only one wavelength is possible due to their similar and rather broad two-photon excitation spectra21.

The fluorescence lifetime of the co-enzyme NAD(P)H is directly dependent on the enzyme to which it binds18,21,22,23. Due to its chemical structure allowing for intramolecular energy transfer, the excited NADH or NADPH molecule loses energy through internal conversion processes, at a rate depending on its binding properties, to the enzymes (catalyst) before it relaxes and emits a fluorescence photon. This lifetime gives insight into the NAD(P)H binding site on the enzyme and, thus, the preferential biochemical reaction taking place19,21,22,23,24,25. The fluorescence lifetime of free NADH and NADPH molecules amounts to ~450 ps, whereas their fluorescence lifetime when bound to an enzyme is much longer (~2,000 ps) and depends on their binding site on the respective enzyme21.

There are more than 370 enzymes involved in NAD(P)H-linked processes; however, only the most abundant will be able to contribute to the resulting NAD(P)H fluorescence lifetime within the excitation range of the microscope. Using RNASeq data from mammal cells, we identified the most abundant NAD(P)H-dependent enzymes and generated a fluorescence lifetime reference to interpret the data generated in tissue and cell samples18. Thereby, this work distinguished for instance between the preferential activity of lactate dehydrogenase (LDH), which is associated with anaerobic glycolytic metabolic pathways, and isocitrate dehydrogenase (IDH) and pyruvate dehydrogenase (PDH) activity, which are mainly involved in aerobic glycolysis/oxidative phosphorylation metabolic pathways16,20. Additionally, NADPH binding to NADPH oxidases, which are the enzymes that are mainly responsible for oxidative burst, can be easily resolved due to the characteristic location of these enzymes in the cell (membrane-bound) and because of the particularly long NADPH fluorescence lifetime (3,650 ps)18,24,29,30,32. RNASeq data from H. polygyrus shows that the reference generated for mammalian cells also applies in adapted form to this nematode27.

Hence, in this work, by performing NAD(P)H fluorescence lifetime imaging (FLIM) in freshly explanted duodenum samples of mice infected with H. polygyrus, information on the ratio between free and enzyme-bound NAD(P)H was acquired, which depicted the general metabolic activity in all tissues, as well as the predominantly active enzyme in each pixel of the image (i.e., the enzyme to which NAD(P)H preferentially binds in that specific location). The success of these experiments relies on the accurate sample preparation of the explanted intestine, the reliable live imaging of the NAD(P)H fluorescence lifetime at subcellular resolution, and standardized data evaluation, as discussed in this protocol.

Protocol

All the experiments were performed in accordance with the National Animal Protection Guidelines and approved by the German Animal Ethics Committee for the protection of animals (G0176/16 and G0207/19). The protocol describes NAD(P)H fluorescence lifetime imaging data acquisition and data evaluation, which allow one to assess the general metabolic activity and specific metabolic pathways in both the host intestine and the parasites upon infection with the natural murine intestinal nematode, H. polygyrus. For this…

Representative Results

Using the current NAD(P)H-FLIM procedure28,29,33 combined with the described phasor analysis method, the metabolic activity and metabolic pathways in healthy and infected duodenums were measured at day 6, day 10, day 12, and day 14 post-infection with the murine intestinal nematode H. polygyrus. Preserved intestinal tissue viability in the excised duodenum revealed by NAD(P)H-FLI…

Discussion

The critical steps within the protocol occur during the preparation and when finding the ROI. Fibers of partially digested food represent a challenge for imaging, mainly due to the endogenous luminescence of the fibers overlapping with the NAD(P)H fluorescence, but also due to their harmonic generation signal. It is of great importance to find ROIs that are free from feces. We aimed to avoid measuring areas containing feces. Washing was avoided because this affects the integrity of the fragile villi and influences the mu…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Robert Günther for their excellent technical support. Financial support from the German Research Council (DFG) under Grant SPP2332 HA2542/12-1 (S.H.), NI1167/7-1 (R.A.N.), HA5354/11-1 (A.E.H.), and RA2544/1-1 (S.R.), under Grant SFB1444, P14 (R.A.N., A.E.H.), under Grant HA5354/8-2 (A.E.H.), and under Grant GRK2046 B4 and B5 (S.H., S.R.) and HA2542/8-1 (S.H.) are greatly acknowledged. W.L. received a PhD fellowship from the Berliner Hochschule für Technik, School of Applied Sciences, Berlin in Medical Physics/Physical Engineering.

Materials

Agarose Thermo fisher J32802.22 ultra pure
Blunt scissors FST fine science tools 14108-09 blund-blund 14 cm
Bodipy c12 thermo fisher D3822 1 mg solid
Control units, diode, TCSPC LaVision Biontech custom TrimScope II
DMSO Thermo fisher D12345 3 mL
Filters Chroma 755 466 ± 20, 525 ± 25, 593 ± 20,  655 ± 20 nm
Foliodrape sheet Hartmann 277500
Gloves Sigma-Aldrich Z423262 nitril
Halogen torch Leica This item has been phased out and is no longer available KL 1500 LCD
hPMT Hamamatsu, Germany H7422 GaAsP
Ilastik Netlify free Software Java Backend
ImageJ National Institutes of health free Software FIJI – standard plugins
Imspector LaVision Biontech Vers. 208
Intravital stage LaVision Biontech custom TrimScope II
Lens system 20x Zeiss custom W-plan-apochom 20x Waterimmersion NA 1.05
Mercury vapor torch LaVision Biontech custom
microbrush Fisher scientific 22-020-002 85 mm
Microscope  LaVision Biontech custom TrimScope II
Oscilloscope Rhode & Schwarz 1326.2000.22
PBS Sigma-Aldrich AM9624 0.5 L
Petri dish Sigma aldrich P5606 40 x 15 mm
Pipette thermo fisher 4651280N Einkanalpipette
Pipette tips thermo fisher 94056980 Spitzen mit Filter
PMT Hamamatsu, Japan H7422 GaAsP
Python Python Software foundation free Software Anaconda 3.7 Spyder IDE, standard librarys with KYTE
Sterio microscope  Leica This item has been phased out and is no longer available M26, 6.3x zoom
Ti:Sa LASER CHAMELION ULTRA II Coherent, APE 690-1080 nm tunable, 80MHz
Tissueglue 3M 51115053603 3 mL
Tweezers FST fine science tools 11049-10 blund, graefe, angeled
Tweezers FST fine science tools 91197-00 Dumont, curved

References

  1. Hotez, P. J., Fenwick, A., Savioli, L., Molyneux, D. H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet. 373 (9674), 1570-1575 (2009).
  2. Sartorius, B., et al. Prevalence and intensity of soil-transmitted helminth infections of children in sub-Saharan Africa, 2000-18: A geospatial analysis. The Lancet Global Health. 9 (1), e52-e60 (2021).
  3. Affinass, N., et al. Manipulation of the balance between Th2 and Th2/1 hybrid cells affects parasite nematode fitness in mice. European Journal of Immunology. 48 (12), 1958-1964 (2018).
  4. Hartmann, S., et al. Gastrointestinal nematode infection interferes with experimental allergic airway inflammation but not atopic dermatitis. Clinical & Experimental Allergy. 39 (10), 1585-1596 (2009).
  5. Hepworth, M. R., et al. Mast cells orchestrate type 2 immunity to helminths through regulation of tissue-derived cytokines. Proceedings of the National Academy of Sciences of the United States of America. 109 (17), 6644-6649 (2012).
  6. Rausch, S., et al. Establishment of nematode infection despite increased Th2 responses and immunopathology after selective depletion of Foxp3+ cells. European Journal of Immunology. 39 (11), 3066-3077 (2009).
  7. Rausch, S., et al. Parasitic nematodes exert antimicrobial activity and benefit from microbiota-driven support for host immune regulation. Frontiers in Immunology. 9, 2282 (2018).
  8. Steinfelder, S., Rausch, S., Michael, D., Kuhl, A. A., Hartmann, S. Intestinal helminth infection induces highly functional resident memory CD4(+) T cells in mice. European Journal of Immunology. 47 (2), 353-363 (2017).
  9. Whelan, R. A., et al. A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Molecular Therapy. 22 (10), 1730-1740 (2014).
  10. Ziegler, T., et al. A novel regulatory macrophage induced by a helminth molecule instructs IL-10 in CD4+ T cells and protects against mucosal inflammation. The Journal of Immunology. 194 (4), 1555-1564 (2015).
  11. Grantham, B. D., Barrett, J. Amino acid catabolism in the nematodes Heligmosomoides polygyrus and Panagrellus redivivus. 2. Metabolism of the carbon skeleton. Parasitology. 93 (Pt 3), 495-504 (1986).
  12. Dmitriev, R. I., Intes, X., Barroso, M. M. Luminescence lifetime imaging of three-dimensional biological objects. Journal of Cell Science. 134 (9), 1-17 (2021).
  13. Mossakowski, A., et al. Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathologica. 130 (6), 799-814 (2015).
  14. Qian, T., et al. Label-free imaging for quality control of cardiomyocyte differentiation. Nature Communications. 12, 4580 (2021).
  15. Bayerl, S., et al. Time lapse in vivo microscopy reveals distinct dynamics of microglia-tumor environment interactions-a new role for the tumor perivascular space as highway for trafficking microglia. Glia. 64 (7), 1210-1226 (2016).
  16. Skala, M. C., et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of Sciences of the United States of America. 104 (49), 19494-19499 (2007).
  17. Skala, M. C., et al. Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Research. 65 (4), 1180-1186 (2005).
  18. Leben, R., Kohler, M., Radbruch, H., Hauser, A. E., Niesner, R. A. Systematic enzyme mapping of cellular metabolism by phasor-analyzed label-free NAD(P)H fluorescence lifetime imaging. International Journal of Molecular Sciences. 20 (22), 5565 (2019).
  19. Chacko, J. V., Eliceiri, K. W. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity. Cytometry. 95 (1), 56-69 (2019).
  20. Stringari, C., et al. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proceedings of the National Academy of Sciences of the United States of America. 108 (33), 13582-13587 (2011).
  21. Lakowicz, J. R., Szmacinski, H., Nowaczyk, K., Johnson, M. L. Fluorescence lifetime imaging of free and protein-bound NADH. Proceedings of the National Academy of Sciences of the United States of America. 89 (4), 1271-1275 (1992).
  22. Blacker, T. S., et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nature Communications. 5 (1), 3936 (2014).
  23. Blacker, T. S., Duchen, M. R. NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys. J. 122 (7), 1240-1253 (2023).
  24. Niesner, R., et al. Selective detection of NADPH oxidase in polymorphonuclear cells by means of NAD(P)H-based fluorescence lifetime imaging. Journal of Biophysics. 2008, 602639 (2008).
  25. Vishwasrao, H. D., Heikal, A. A., Kasischke, K. A., Webb, W. W. Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. Journal of Biology and Chemistry. 280 (26), 25119-25126 (2005).
  26. Babior, B. M. NADPH oxidase: An update. Blood. 93 (5), 1464-1476 (1999).
  27. Hewitson, J. P., et al. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. Journal of Proteomics. 74 (9), 1573-1594 (2011).
  28. Rakhymzhan, A., et al. Synergistic strategy for multicolor two-photon microscopy: Application to the analysis of germinal center reactions in vivo. Scientific Reports. 7, 7101 (2017).
  29. Bremer, D., et al. Method to detect the cellular source of over-activated NADPH oxidases using NAD(P)H fluorescence lifetime imaging. Current Protocols in Cytometry. 80, 9.52.1-9.52.14 (2017).
  30. Leben, R., et al. Phasor-based endogenous NAD(P)H fluorescence lifetime imaging unravels specific enzymatic activity of neutrophil granulocytes preceding NETosis. International Journal of Molecular Sciences. 19 (4), 1018 (2018).
  31. Digman, M. A., Caiolfa, V. R., Zamai, M., Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophysics Journal. 94 (2), L14-L16 (2008).
  32. Lindquist, R. L., Bayat-Sarmadi, J., Leben, R., Niesner, R., Hauser, A. E. NAD(P)H oxidase activity in the small intestine is predominantly found in enterocytes, not professional phagocytes. International Journal of Molecular Sciences. 19 (5), 1365 (2018).
  33. Liublin, W., et al. NAD(P)H fluorescence lifetime imaging of live intestinal nematodes reveals metabolic crosstalk between parasite and host. Scientific Reports. 12, 7264 (2022).
  34. Nhu, N. T. Q., et al. Alkaline pH increases swimming speed and facilitates mucus penetration for Vibrio cholerae. Journal of Bacteriology. 203 (7), e00607 (2021).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Liublin, W., Rausch, S., Leben, R., Liebeskind, J., Hauser, A. E., Hartmann, S., Niesner, R. A. NAD(P)H Fluorescence Lifetime Imaging for the Metabolic Analysis of the Murine Intestine and Parasites During Nematode Infection. J. Vis. Exp. (199), e64982, doi:10.3791/64982 (2023).

View Video