Summary

Caractérisation quantitative des propriétés de bio-encre photosensible liquide pour l’impression numérique continue basée sur le traitement de la lumière

Published: April 14, 2023
doi:

Summary

Cette étude utilise la température et la composition des matériaux pour contrôler les propriétés de contrainte d’élasticité des fluides de contrainte d’élasticité. L’état solide de l’encre peut protéger la structure d’impression, et l’état liquide peut continuellement remplir la position d’impression, réalisant le traitement numérique de la lumière 3D d’encres biologiques extrêmement douces.

Abstract

La fabrication d’impression précise de bio-encres est une condition préalable à l’ingénierie tissulaire; la courbe de travail de Jacobs est l’outil permettant de déterminer les paramètres d’impression précis du traitement numérique de la lumière (DLP). Cependant, l’acquisition de courbes de travail gaspille des matériaux et nécessite une grande formabilité des matériaux, qui ne conviennent pas aux biomatériaux. En outre, la réduction de l’activité cellulaire due à des expositions multiples et l’échec de la formation structurelle dû à des positionnements répétés sont deux problèmes inévitables dans la bio-impression DLP conventionnelle. Ce travail introduit une nouvelle méthode d’obtention de la courbe de travail et le processus d’amélioration de la technologie d’impression DLP continue basée sur une telle courbe de travail. Cette méthode d’obtention de la courbe de travail est basée sur l’absorbance et les propriétés photorhéologiques des biomatériaux, qui ne dépendent pas de la formabilité des biomatériaux. Le processus d’impression DLP continu, obtenu en améliorant le processus d’impression en analysant la courbe de travail, augmente l’efficacité d’impression plus que décupler et améliore considérablement l’activité et la fonctionnalité des cellules, ce qui est bénéfique pour le développement de l’ingénierie tissulaire.

Introduction

L’ingénierie tissulaire1 est importante dans le domaine de la réparation d’organes. En raison du manque de don d’organes, certaines maladies, telles que l’insuffisance hépatique et l’insuffisance rénale, ne peuvent pas être bien guéries et de nombreux patients ne reçoivent pas de traitement en temps opportun2. Les organoïdes ayant la fonction requise des organes peuvent résoudre le problème causé par le manque de don d’organes. La construction des organoïdes dépend des progrès et du développement de la technologie de bio-impression3.

Par rapport à la bio-impression de type extrusion 4 et à la bioimpression à jet d’encre5, la vitesse d’impression et la précision d’impression de la méthodede bioimpression numérique par traitement de la lumière (DLP) sont plus élevées 6,7. Le module d’impression de la méthode d’extrusion est ligne par ligne, tandis que le module d’impression de la méthode de type jet d’encre est point par point, ce qui est moins efficace que le module d’impression couche par couche de la bio-impression DLP. L’exposition à la lumière ultraviolette (UV) modulée à une couche entière de matériau pour durcir une couche dans la bio-impression DLP et la taille des caractéristiques de l’image déterminent la précision de l’impression DLP. Cela rend la technologie DLP très efficace 8,9,10. En raison du surdurcissement de la lumière UV, la relation précise entre le temps de durcissement et la taille d’impression est importante pour la bio-impression DLP de haute précision. En outre, l’impression DLP continue est une modification de la méthode d’impression DLP qui peut grandement améliorer l’efficacité d’impression11,12,13. Pour l’impression DLP continue, les conditions d’impression précises sont les facteurs les plus importants.

La relation entre le temps de durcissement et la taille d’impression est appelée courbe de travail de Jacobs, qui est largement utilisée dans l’impression DLP14,15,16. La méthode traditionnelle pour obtenir la relation consiste à exposer le matériau pendant un certain temps et à mesurer l’épaisseur de durcissement pour obtenir un point de données sur le temps d’exposition et l’épaisseur de durcissement. En répétant cette opération au moins cinq fois et en ajustant les points de données, on obtient la courbe de travail de Jacobs. Cependant, cette méthode présente des inconvénients évidents; il doit consommer beaucoup de matériau pour réaliser le durcissement, les résultats dépendent fortement des conditions d’impression, les bio-encres utilisées dans la bio-impression DLP sont chères et rares, et la formabilité des bio-encres n’est généralement pas bonne, ce qui peut conduire à des mesures inexactes de l’épaisseur de durcissement.

Cet article fournit une nouvelle méthode pour obtenir la relation de durcissement en fonction des propriétés physiques de la bio-encre. L’utilisation de cette théorie permet d’optimiser l’impression DLP continue. Cette méthode peut être utilisée pour obtenir la relation de durcissement plus rapidement et avec plus de précision; le durcissement DLP continu peut donc être mieux déterminé.

Protocol

1. Préparation théorique Définir trois paramètres : absorbance liquide (Al), absorbance solide (As) et temps seuil (tT)17. Réécrivez la courbe de travail traditionnelle de Jacobs en utilisant ces trois paramètres17 selon l’équation 1:(Équation 1)Ici, t H est le temps de durcissement …

Representative Results

Cet article montre une nouvelle méthode pour obtenir des paramètres de durcissement et introduit une nouvelle façon d’obtenir une impression DLP continue, démontrant l’efficacité de cette méthode dans la détermination de la courbe de travail. Nous avons utilisé trois matériaux différents dans l’impression DLP pour vérifier la précision de la courbe de travail théorique obtenue par la méthode présentée dans cet article. Les matériaux sont 20% (v / v) de diacrylate de poly…

Discussion

Les étapes critiques de ce protocole sont décrites à la section 2. Il est nécessaire d’unifier l’intensité lumineuse utilisée dans l’essai photorhéologique et l’intensité lumineuse d’impression dans les essais réels. L’équipement de test d’absorbance est la partie la plus importante. La forme de la chambre d’essai doit être la même que la zone photosensible de l’intensimètre lumineux. En raison des propriétés des matériaux qui changent continuellement pendant tout le processus d’exposi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Les auteurs remercient la Fondation nationale des sciences naturelles de Chine (subvention nos 12125205, 12072316 12132014) et la China Postdoctoral Science Foundation (subvention no 2022M712754) pour leur soutien.

Materials

Brilliant Blue Aladdin (Shanghai, China). 6104-59-2 
DLP software Creation Workshop N/A
Lithium phenyl-2,4,6-trimethylbenzoylphosphinate N/A LAP; synthesized
Light source OmniCure https://www.excelitas.com/product-category/omnicure-s-series-lamp-spot-uv-curing-systems 365 nm
Polyethylene (glycol) diacrylate Sigma-Aldrich 455008 PEGDA Mw ~700
Rheometer  Anton Paar, Austria MCR302

References

  1. Berthiaume, F., Maguire, T. J., Yarmush, M. L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering. 2 (1), 403-430 (2011).
  2. Ng, W. L., Chua, C. K., Shen, Y. -. F. Print me an organ! Why we are not there yet. Progress in Polymer Science. 97, 101145 (2019).
  3. Sun, W., et al. The bioprinting roadmap. Biofabrication. 12 (2), 022002 (2020).
  4. Jiang, T., Munguia-Lopez, J. G., Flores-Torres, S., Kort-Mascort, J., Kinsella, J. M. Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Applied Physics Reviews. 6 (1), 011310 (2019).
  5. Ng, W., et al. L.cControlling droplet impact velocity and droplet volume: Key factors to achieving high cell viability in sub-nanoliter droplet-based bioprinting. International Journal of Bioprinting. 8 (1), 424 (2021).
  6. Yu, K., et al. Printability during projection-based 3D bioprinting. Bioactive Materials. 11, 254-267 (2022).
  7. Zhong, Z., et al. Bioprinting of dual ECM scaffolds encapsulating limbal stem/progenitor cells in active and quiescent statuses. Biofabrication. 13 (4), (2021).
  8. Huh, J., et al. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication. 13 (3), (2021).
  9. Saed, A. B., et al. Functionalized poly l-lactic acid synthesis and optimization of process parameters for 3D printing of porous scaffolds via digital light processing (DLP) method. Journal of Manufacturing Processes. 56, 550-561 (2020).
  10. Ng, W. L., et al. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication. 12 (2), 022001 (2020).
  11. Li, Y., et al. High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Additive Manufacturing. 30, 100889 (2019).
  12. Kelly, B. E., et al. Volumetric additive manufacturing via tomographic reconstruction. Science. 363 (6431), 1075-1079 (2019).
  13. Tumbleston, J. R., et al. Continuous liquid interface production of 3D objects. Science. 347 (6228), 1349-1352 (2015).
  14. Classens, K., Hafkamp, T., Westbeek, S., Remmers, J. J. C., Weiland, S. Multiphysical modeling and optimal control of material properties for photopolymerization processes. Additive Manufacturing. 38, 101520 (2021).
  15. Gong, H., Beauchamp, M., Perry, S., Woolley, A. T., Nordin, G. P. Optical approach to resin formulation for 3D printed microfluidics. RSC Advances. 5 (129), 106621-106632 (2015).
  16. Hofstetter, C., Orman, S., Baudis, S., Stampfl, J. Combining cure depth and cure degree, a new way to fully characterize novel photopolymers. Additive Manufacturing. 24, 166-172 (2018).
  17. Li, Y., et al. Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Additive Manufacturing. 37, 101716 (2021).
  18. Wang, M., et al. Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nature Communications. 13 (1), 3317 (2022).
check_url/65277?article_type=t

Play Video

Cite This Article
Li, Y., Wang, Y., Yin, J., Qian, J. Quantitative Characterization of Liquid Photosensitive Bioink Properties for Continuous Digital Light Processing Based Printing. J. Vis. Exp. (194), e65277, doi:10.3791/65277 (2023).

View Video