Summary

一种幼狨猴的人工饲养方法

Published: June 09, 2023
doi:

Summary

在这里,我们描述了一种在动物孵化器中饲养幼年狨猴的人工饲养方法。该方法大大提高了狨猴幼崽的存活率,为研究在不同产后环境中饲养的具有相似遗传背景的狨猴幼崽的发育提供了机会。

Abstract

普通狨猴(Callithrix jacchus)是一种小型且高度社会化的新世界猴子,具有很高的繁殖率,已被证明是生物医学和神经科学研究的引人注目的非人类灵长类动物模型。一些女性生下三胞胎;但是,父母不能全部抚养。为了拯救这些幼崽,我们开发了一种人工饲养方法,用于饲养新生狨猴。在该协议中,我们描述了食物的配方,喂养时间,温度和湿度的配置,以及人工饲养的婴儿对殖民地环境的适应。这种人工饲养方法显著提高了狨猴幼崽的存活率(不人工饲养:45%;人工饲养:86%),并为研究在不同产后环境中饲养的具有相似遗传背景的狨猴幼崽的发育提供了机会。由于该方法实用且易于使用,我们预计它也可以应用于其他使用普通狨猴的实验室。

Introduction

普通狨猴(Callithrix jacchus)是一种起源于南美洲和中美洲的小型树栖新世界猴子。在过去的几十年里,狨猴在生物医学研究中的使用迅速增长,因为与其他非人类灵长类动物 (NHP) 相比,狨猴的几个关键优势,包括它们的体型更小、更容易在圈养中处理和繁殖、妊娠时间更短、性成熟更早和人畜共患风险较低 1,2,3,4,5,6 .普通狨猴具有与人类相似的大脑结构和大脑功能,并表现出丰富的发声和具有丰富情感的高度社会行为。它是不同类型的神经科学研究的引人注目的 NHP 模型,例如感觉处理研究78910、11、12、13、14、声音交流 15、16、171819、脊髓损伤模型 20,21,22,23,帕金森病24,25,26,27,28和年龄相关疾病29与其他非人灵长类相比,普通狨猴具有较高的繁殖率,可用于转基因修饰30,31,32。这种灵长类动物也广泛用于药理学、血管造影、病原体和免疫研究3334、3536、37、3839然而,狨猴的供应仍然非常有限,尤其是在中国,无法满足快速增长的科研需求。

在狨猴群落中,成年动物每天喂食一到两次,一些机构改变了幼年狨猴的饮食 40.一般来说,幼年狨猴通常会牢牢抓住父亲或哥哥姐姐的身体进行日常护理,每天多次交给母亲喝奶。一些雌性狨猴会生下三胞胎,在这种情况下,一两个婴儿由于缺乏乳汁而无法存活;此外,有些父母因为缺乏护理经验或其他未知原因而不照顾婴儿。这对许多实验室来说是一个巨大的损失。一些研究报告了圈养环境中成年狨猴的营养管理方法 40,41,42 利用具有不同常量营养素成分、维生素和矿物质的食物和配方,以及不同的富集喂养方案(捣碎、凝胶、纯化或罐装)2,41之前的一项研究报道了一种针对狨猴三胞胎43 的协作饲养方法,其中照顾者每天带走一个婴儿,全天用手喂养它,并在第二天将其换成另一个三胞胎。虽然这种方法可以让婴儿得到父母的照顾,但它需要有经验的照顾者每天将婴儿从父母的身体中抓起,并且是劳动密集型的。到目前为止,还没有研究报告过对新生狨猴进行详细的、循序渐进的人工饲养方法。

本研究的目标是为那些对狨猴发育感兴趣但资源有限的人提供一种人工饲养方法。与以前的协作抚养方法43相比,现在的方法是一种对婴儿家庭造成较少干扰且易于学习的替代方案。本文基于母乳喂养的基本规则和5年的实践,描述了一种人工饲养幼狨猴的方法,包括食物的准备、喂养时间表、动物孵化器温度和湿度的配置,以及幼年动物对群体环境的适应。

Protocol

所有实验程序均经浙江大学动物使用与护理委员会批准,并遵循美国国立卫生研究院(NIH)指南。 1. 住房和畜牧业44 将菌落室设置为12小时:12小时昼夜循环,温度为26-28°C,相对湿度为45%-55%。 将 2-6 岁的雄性和雌性狨猴配对,并将它们放在笼子 (850 mm x 800 mm x 800 mm) 中,具有足够的空间和新鲜空气,并配备 24 小时通风系统。</l…

Representative Results

体重是动物身体发育的关键指标,在本协议中用作狨猴健康状况的指标。在这项工作中,人工饲养的动物的体重随着年龄的增长而逐渐增加(图2A,n = 16),类似于先前研究中新生婴儿的体重46。为了尽量减少对殖民地繁殖家庭的干扰,我们没有每天对殖民地中的幼年狨猴进行称重。我们获得了父母饲养的动物在出生后1个月及以后的体重,并将其与同龄人?…

Discussion

普通狨猴是生物医学和神经科学研究非常有用的非人灵长类模型。然而,狨猴资源太有限,无法满足快速增长的需求。在这项工作中,我们开发了一种人工饲养方法,不仅可以提高狨猴幼崽的存活率,还可以为研究它们的产后发育提供机会。这种人工饲养方法实用且易于学习,因此很容易适用于其他使用普通狨猴的实验室。

一些先天性缺陷通常在出生后的前 2 周内出现。到?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢李明轩对本手稿早期版本的语法和润色。这项工作得到了中国浙江省自然科学基金(LD22H090003)的支持;国家自然科学基金(32170991 32071097),STI2030重大专项2021ZD0204100(2021ZD0204101)和2022ZD0205000(2022ZD0205003);以及浙江大学教育部脑科学与脑机集成前沿科学中心。

Materials

animal incubator RCOM, Korea MX – BL600N, 855 mm (W) x 470 mm (L) x 440 mm (H)
baby milk powder Meadjohnson, America suitable for 0-12 months of age, executive standard – GB25596
baby rice paste HEINZ, China suitable for 0-6 months of age, executive standard – GB10769
baby wipes babycare, China soft
beaker ShuNiu, China 100 mL
blankets Grace, China 10 cm × 10 cm, soft
climbing frame WowWee, China firm and no small circular structures
disposable diaper pads Hi Health Pet, China either M or L size
disposable sterile syringe Cofoe, China 1 mL, 2.5 mL, 3 mL, 5 mL, 10 mL
electronic scale YouSheng, China measuring range from 0 to 6,000 g with precision of 0.2 g
intravenous injector HD, China 0.55 mm x 20 mm needle
kettle FGA, China warm-keeping kettle 1,500 mL
lactulose BELCOL, China to solve constipation
plastic weighing dish SKSLAB, China 80 mm x 80 mm x 22 mm, used as a bowl
plush toy Lebiyou, China soft
probiotic powder G-Pet, China to regulate gastrointestinal environment
sterile centrifuge tube NEST, China 50 mL
swab OYEAH, China 80 – 100 mm
toy roller WowWee, China firm and no small circular structures

References

  1. Miller, C. T., et al. Marmosets: A neuroscientific model of human social behavior. Neuron. 90 (2), 219-233 (2016).
  2. Ross, C. N., Colman, R., Power, M., Tardif, S. Marmoset metabolism, nutrition, and obesity. ILAR Journal. 61 (2-3), 179-187 (2020).
  3. Kishi, N., Sato, K., Sasaki, E., Okano, H. Common marmoset as a new model animal for neuroscience research and genome editing technology. Development, Growth & Differentiation. 56 (1), 53-62 (2014).
  4. Prins, N. W., et al. Common marmoset (Callithrix jacchus) as a primate model for behavioral neuroscience studies. Journal of Neuroscience Methods. 284, 35-46 (2017).
  5. Tokuno, H., Watson, C., Roberts, A., Sasaki, E., Okano, H. Marmoset neuroscience. Neuroscience Research. 93, 1-2 (2015).
  6. Hodges, J. K., Henderson, C., Hearn, J. P. Relationship between ovarian and placental steroid production during early pregnancy in the marmoset monkey (Callithrix jacchus). Journal of Reproduction and Fertility. 69 (2), 613-621 (1983).
  7. Troilo, D., Judge, S. J. Ocular development and visual deprivation myopia in the common marmoset (Callithrix jacchus). Vision Research. 33 (10), 1311-1324 (1993).
  8. Mitchell, J. F., Leopold, D. A. The marmoset monkey as a model for visual neuroscience. Neuroscience Research. 93, 20-46 (2015).
  9. Hung, C. C., et al. Functional MRI of visual responses in the awake, behaving marmoset. NeuroImage. 120, 1-11 (2015).
  10. Gao, L., Kostlan, K., Wang, Y., Wang, X. Distinct subthreshold mechanisms underlying rate-coding principles in primate auditory cortex. Neuron. 91 (4), 905-919 (2016).
  11. Gao, L., Wang, X. Subthreshold activity underlying the diversity and selectivity of the primary auditory cortex studied by intracellular recordings in awake marmosets. Cerebral Cortex. 29 (3), 994-1005 (2019).
  12. Gao, L., Wang, X. Intracellular neuronal recording in awake nonhuman primates. Nature Protocols. 15, 3615-3631 (2020).
  13. Wang, X., et al. Corticofugal modulation of temporal and rate representations in the inferior colliculus of the awake marmoset. Cerebral Cortex. 32 (18), 4080-4097 (2022).
  14. Wang, X., et al. Selective corticofugal modulation on sound processing in auditory thalamus of awake marmosets. Cerebral Cortex. 33 (7), 3372-3386 (2022).
  15. Kajikawa, Y., et al. Coding of FM sweep trains and twitter calls in area CM of marmoset auditory cortex. Hearing Research. 239 (1-2), 107-125 (2008).
  16. Choi, D., Bruderer, A. G., Werker, J. F., et al. Sensorimotor influences on speech perception in pre-babbling infants: Replication and extension of Bruderer et al. Psychonomic Bulletin & Review. 26 (4), 1388-1399 (2019).
  17. Eliades, S. J., Miller, C. T. Marmoset vocal communication: Behavior and neurobiology. Developmental Neurobiology. 77 (3), 286-299 (2017).
  18. Roy, S., Zhao, L., Wang, X. Distinct neural activities in premotor cortex during natural vocal behaviors in a New World primate, the common marmoset (Callithrix jacchus). Journal of Neuroscience. 36 (48), 12168-12179 (2016).
  19. Simões, C. S., et al. Activation of frontal neocortical areas by vocal production in marmosets. Frontiers in Integrative Neuroscience. 4, 123 (2010).
  20. Iwanami, A., et al. Transplantation of human neural stem cells for spinal cord injury in primates. Journal of Neuroscience Research. 80 (2), 182-190 (2005).
  21. Schorscher-Petcu, A., Dupré, A., Tribollet, E. Distribution of vasopressin and oxytocin binding sites in the brain and upper spinal cord of the common marmoset. Neuroscience Letters. 461 (3), 217-222 (2009).
  22. Bowes, C., Burish, M., Cerkevich, C., Kaas, J. Patterns of cortical reorganization in the adult marmoset after a cervical spinal cord injury. Journal of Comparative Neurology. 521 (15), 3451-3463 (2013).
  23. Kondo, T., et al. Histological and electrophysiological analysis of the corticospinal pathway to forelimb motoneurons in common marmosets. Neuroscience Research. 98, 35-44 (2015).
  24. Nash, J. E., et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Experimental Neurology. 165 (1), 136-142 (2000).
  25. van Vliet, S. A., et al. Neuroprotective effects of modafinil in a marmoset Parkinson model: Behavioral and neurochemical aspects. Behavioural Pharmacology. 17 (5-6), 453-462 (2006).
  26. van Vliet, S. A., Vanwersch, R. A., Jongsma, M. J., Olivier, B., Philippens, I. H. Therapeutic effects of Delta9-THC and modafinil in a marmoset Parkinson model. European Neuropsychopharmacology. 18 (5), 383-389 (2008).
  27. Philippens, I. H., t Hart, B. A., Torres, G. The MPTP marmoset model of parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases. Drug Discovery Today. 15 (23-24), 985-990 (2010).
  28. Santana, M. B., et al. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron. 84 (4), 716-722 (2014).
  29. Tardif, S. D., Mansfield, K. G., Ratnam, R., Ross, C. N., Ziegler, T. E. The marmoset as a model of aging and age-related diseases. ILAR Journal. 52 (1), 54-65 (2011).
  30. Sasaki, E., et al. Generation of transgenic non-human primates with germline transmission. Nature. 459, 523-527 (2009).
  31. Sasaki, E. Prospects for genetically modified non-human primate models, including the common marmoset. Neuroscience Research. 93, 110-115 (2015).
  32. Park, J. E., Sasaki, E. Assisted reproductive techniques and genetic manipulation in the common marmoset. ILAR Journal. 61 (2-3), 286-303 (2020).
  33. Smith, D., Trennery, P., Farningham, D., Klapwijk, J. The selection of marmoset monkeys (Callithrix jacchus) in pharmaceutical toxicology. Laboratory Animals. 35 (2), 117-130 (2001).
  34. Smith, T. E., Tomlinson, A. J., Mlotkiewicz, J. A., Abbott, D. H. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chemical Senses. 26 (5), 449-458 (2001).
  35. Jagessar, S. A., et al. Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete freund adjuvant. Journal of Neuropathology and Experimental Neurology. 69 (4), 372-385 (2010).
  36. Kap, Y. S., Laman, J. D., ‘t Hart, B. A. Experimental autoimmune encephalomyelitis in the common marmoset, a bridge between rodent EAE and multiple sclerosis for immunotherapy development. Journal of Neuroimmune Pharmacology. 5 (2), 220-230 (2010).
  37. Carrion, R., Patterson, J. L. An animal model that reflects human disease: The common marmoset (Callithrix jacchus). Current Opinion in Virology. 2 (3), 357-362 (2012).
  38. Jagessar, S. A., et al. Overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus). Experimental Animals. 62 (3), 159-171 (2013).
  39. Feng, Z., et al. Biologically excretable aggregation-induced emission dots for visualizing through the marmosets intravitally: Horizons in future clinical nanomedicine. Advanced Materials. 33 (17), 2008123 (2021).
  40. Goodroe, A., et al. Current practices in nutrition management and disease incidence of common marmosets (Callithrix jacchus). Journal of Medical Primatology. 50 (3), 164-175 (2021).
  41. Power, M. L., Koutsos, L., Marini, R., Wachtman, L., Tardif, S., Mansfield, K., Fox, J. Chapter 4 – Marmoset nutrition and dietary husbandry. The Common Marmoset in Captivity and Biomedical Research. , 63-76 (2019).
  42. Gore, M. A., et al. Callitrichid nutrition and food sensitivity. Journal of Medical Primatology. 30 (3), 179-184 (2001).
  43. Hearn, J. P., Burden, F. J. Collaborative’ rearing of marmoset triplets. Laboratory Animals. 13 (2), 131-133 (1979).
  44. Cao, X., et al. Effect of a high estrogen level in early pregnancy on the development and behavior of marmoset offspring. ACS Omega. 7 (41), 36175-36183 (2022).
  45. Watakabe, A., et al. Application of viral vectors to the study of neural connectivities and neural circuits in the marmoset brain. Developmental Neurobiology. 77 (3), 354-372 (2017).
  46. Takahashi, D. Y., et al. The developmental dynamics of marmoset monkey vocal production. Science. 349 (6249), 734-738 (2015).
  47. Malukiewicz, J., et al. The gut microbiome of exudivorous marmosets in the wild and captivity. Scientific Reports. 12 (1), 5049 (2022).
  48. Shigeno, Y., et al. Comparison of gut microbiota composition between laboratory-bred marmosets (Callithrix jacchus) with chronic diarrhea and healthy animals using terminal restriction fragment length polymorphism analysis. Microbiology and Immunology. 62 (11), 702-710 (2018).
  49. Baxter, V. K., et al. Serum albumin and body weight as biomarkers for the antemortem identification of bone and gastrointestinal disease in the common marmoset. PLoS One. 8 (12), e82747 (2013).
  50. Tardif, S. D., et al. Characterization of obese phenotypes in a small nonhuman primate, the common marmoset (Callithrix jacchus). Obesity. 17 (8), 1499-1505 (2009).
  51. Wachtman, L. M., et al. Differential contribution of dietary fat and monosaccharide to metabolic syndrome in the common marmoset (Callithrix jacchus). Obesity. 19 (6), 1145-1156 (2011).
  52. Power, M. L., Ross, C. N., Schulkin, J., Ziegler, T. E., Tardif, S. D. Metabolic consequences of the early onset of obesity in common marmoset monkeys. Obesity. 21 (12), E592-E598 (2013).
  53. Shimizu, K., et al. Peer-social response in 4 juvenile marmosets represented the emotional development traits depending on family structure. Neuroscience Research. 65, S244 (2009).
  54. Schultz-Darken, N., Braun, K. M., Emborg, M. E. Neurobehavioral development of common marmoset monkeys. Developmental Psychobiology. 58 (2), 141-158 (2016).
  55. Gultekin, Y. B., Hage, S. R. Limiting parental feedback disrupts vocal development in marmoset monkeys. Nature Communications. 8, 14046 (2017).
check_url/65296?article_type=t

Play Video

Cite This Article
Sun, H., Li, R., Lin, Y., Cao, X., Fan, L., Sun, G., Xie, M., Zhu, L., Yu, C., Cai, R., Lyu, C., Wang, X., Zhang, Y., Bai, S., Qi, R., Tang, B., Jia, G., Li, X., Gao, L. Hand-Rearing Method for Infant Marmosets. J. Vis. Exp. (196), e65296, doi:10.3791/65296 (2023).

View Video