Summary

Aislamiento, cultivo e inducción adipogénica de preadipocitos derivados de la fracción vascular estromal a partir de tejido adiposo periaórtico de ratón

Published: July 21, 2023
doi:

Summary

En este trabajo se describe el aislamiento, cultivo e inducción adipogénica de preadipocitos derivados de la fracción vascular estromal a partir de tejido adiposo periaórtico de ratón, lo que permite estudiar la función del tejido adiposo perivascular y su relación con las células vasculares.

Abstract

El tejido adiposo perivascular (PVAT) es un depósito de tejido adiposo que rodea los vasos sanguíneos y exhibe los fenotipos de los adipocitos blancos, beige y marrones. Descubrimientos recientes han arrojado luz sobre el papel central de la PVAT en la regulación de la homeostasis vascular y en la participación en la patogénesis de las enfermedades cardiovasculares. Una comprensión integral de las propiedades y la regulación de PVAT es de gran importancia para el desarrollo de futuras terapias. Los cultivos primarios de adipocitos periaórticos son valiosos para estudiar la función de PVAT y la diafonía entre los adipocitos periaórticos y las células vasculares. En este trabajo se presenta un protocolo económico y factible para el aislamiento, cultivo e inducción adipogénica de preadipocitos derivados de la fracción vascular estromal a partir de tejido adiposo periaórtico de ratón, que puede ser útil para modelar la adipogénesis o lipogénesis in vitro. El protocolo describe el procesamiento de tejidos y la diferenciación celular para el cultivo de adipocitos periaórticos de ratones jóvenes. Este protocolo proporcionará la piedra angular tecnológica en el banco para la investigación de la función de PVAT.

Introduction

Se cree que el tejido adiposo perivascular (PVAT), una estructura perivascular compuesta por una mezcla de adipocitos maduros y una fracción vascular estromal (SVF), interactúa con la pared del vaso adyacente a través de su secretoma paracrino1. Como regulador crítico de la homeostasis vascular, la disfunción de PVAT está implicada en la patogénesis de las enfermedades cardiovasculares 2,3,4. La SVF del tejido adipocito está formada por varias poblaciones celulares esperadas, entre las que se incluyen las células endoteliales, las células inmunitarias, las células mesoteliales, las células neuronales y las células madre y progenitoras adiposas (ASPC)5,6. Es bien sabido que las ASPC que residen en la SVF del tejido adiposo pueden dar lugar a adipocitos maduros5. Se infiere que la SVF es una fuente crítica de adipocitos maduros en PVAT. Varios estudios han demostrado que el PVAT-SVF puede diferenciarse en adipocitos maduros en condiciones específicas de inducción 6,7,8.

Actualmente, existen dos sistemas de aislamiento para aislar la SVF del tejido adiposo, uno es la digestión enzimática y el otro es no enzimático9. Los métodos enzimáticos suelen dar lugar a un mayor rendimiento de células progenitoras nucleadas10. Hasta la fecha, los beneficios de la SVF en la promoción de la regeneración vascular y la neovascularización en la cicatrización de heridas, enfermedades urogenitales y cardiovasculares han sido ampliamente demostrados11, especialmente en dermatología y cirugía plástica12,13. Sin embargo, las perspectivas de aplicación clínica de la SVF derivada de PVAT no han sido bien exploradas, lo que puede atribuirse a la falta de un método estandarizado para el aislamiento de SVF de PVAT. El objetivo de este protocolo es establecer un enfoque estandarizado para el aislamiento, cultivo e inducción adipogénica de preadipocitos derivados de la FVSP a partir de la PVAT de ratón que rodea la aorta torácica, lo que permite una mayor investigación de la función de la PVAT. Este protocolo optimiza el procesamiento de tejidos y las técnicas de diferenciación celular para el cultivo de adipocitos periaórticos obtenidos de ratones jóvenes.

Protocol

Los protocolos con animales fueron aprobados por el Comité Institucional de Cuidado y Uso de Animales del Hospital del Tórax de Shanghái, afiliado a la Facultad de Medicina de la Universidad Jiao Tong de Shanghái (número de aprobación: KS23010) y cumplían con las normas éticas pertinentes. Para este experimento se prefieren ratones machos y hembras C57BL/6 de 4 a 8 semanas de edad. 1. Preparación de herramientas quirúrgicas, tampones y medios de cultivo Her…

Representative Results

Utilizando este protocolo descrito anteriormente, aislamos cuidadosamente las PVAT que rodean las aortas torácicas de ratón (Figura 1A-D). Después de lavar y picar los PVAT en trozos pequeños con unas tijeras estériles (Figura 1E, F), los fragmentos de tejido se digirieron en una solución de digestión que contenía colagenasa tipo 1 (1 mg/mL) y dispasa II (4 mg/mL) y se incubaron a 37 °C en un agitador d…

Discussion

Proponemos un enfoque práctico y factible para el aislamiento y la inducción adipogénica de preadipocitos derivados de la FVS a partir de tejido adiposo periaórtico de ratón. Las ventajas de este protocolo son que es sencillo y económico. Un número adecuado de ratones es fundamental para un aislamiento exitoso, ya que un tejido insuficiente puede dar lugar a una baja densidad de SVF y a un mal estado de crecimiento, lo que en última instancia afecta a la eficiencia lipogénica. Además, la edad del ratón es un f…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabajo contó con el apoyo de la Fundación Nacional de Ciencias Naturales de China (82130012 y 81830010) y los proyectos Nurture para la investigación básica del Hospital del Tórax de Shanghái (número de subvención: 2022YNJCQ03).

Materials

0.2 μm syringe filters PALL 4612
12-well plate  Labselect 11210
15 mL centrifuge tube Labserv 310109003
3,3',5-triiodo-L-thyronine (T3) Sigma-Aldrich T-2877 1 nM
50 mL centrifuge tube Labselect CT-002-50A
anti-adiponectin Abcam ab22554 1:1,000 working concentration
anti-COX IV CST 4850 1:1,000 working concentration
anti-FABP4 CST 2120 1:1,000 working concentration
anti-PGC1α Abcam ab191838 1:1,000 working concentration
anti-PPARγ Invitrogen MA5-14889 1:1,000 working concentration
anti-UCP1 Abcam ab10983 1:1,000 working concentration
anti-α-Actinin CST 6487 1:1,000 working concentration
BSA Beyotime ST023-200g 1%
C57BL/6 mice aged 4-8 weeks of both sexes Shanghai Model Organisms Center, Inc.
Cell Strainer 70 µm, nylon Falcon 352350
Collagen from calf skin Sigma-Aldrich C8919
Collagenase, Type 1 Worthington LS004196 1 mg/mL
Dexamethasone Sigma-Aldrich D1756 1 μM
Dispase II Sigma-Aldrich D4693-1G 4 mg/mL
Fetal bovine serum  Gibco 16000-044 10%
HEPES Sigma-Aldrich H4034-25G 20 mM
High glucose DMEM Hyclone SH30022.01
IBMX  Sigma-Aldrich I7018 0.5 mM
Incubator with orbital shaker Shanghai longyue Instrument Eruipment Co.,Ltd. LYZ-103B
Insulin (cattle)  Sigma-Aldrich 11070-73-8 1 μM
Isoflurane RWD R510-22-10
Krebs-Ringer's Solution Pricella  PB180347 protect from light 
Microsurgical forceps Beyotime FS233
Microsurgical scissor Beyotime FS217
Oil Red O  Sangon Biotech (Shanghai) Co., Ltd A600395-0050
PBS (Phosphate-buffered saline) Sangon Biotech (Shanghai) Co., Ltd B548117-0500
Penicillin-Streptomycin Gibco 15140122
Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) Jackson ImmunoResearch  115-035-146 1:5,000 working concentration
Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) Jackson ImmunoResearch  111-035-144 1:5,000 working concentration
Rosiglitazone Sigma-Aldrich R2408 1 μM
Standard forceps Beyotime FS225
Surgical scissor Beyotime FS001

References

  1. Akoumianakis, I., Antoniades, C. The interplay between adipose tissue and the cardiovascular system: is fat always bad. Cardiovascular Research. 113 (9), 999-1008 (2017).
  2. Huang, C. L., et al. Thoracic perivascular adipose tissue inhibits VSMC apoptosis and aortic aneurysm formation in mice via the secretome of browning adipocytes. Acta Pharmacologica Sinica. 44 (2), 345-355 (2023).
  3. Xia, N., Li, H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. British Journal of Pharmacology. 174 (20), 3425-3442 (2017).
  4. Brown, N. K., et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arteriosclerosis, Thrombosis, and Vascular Biology. 34 (8), 1621-1630 (2014).
  5. Ferrero, R., Rainer, P., Deplancke, B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends in Cell Biology. 30 (12), 937-950 (2020).
  6. Angueira, A. R., et al. Defining the lineage of thermogenic perivascular adipose tissue. Nature Metabolism. 3 (4), 469-484 (2021).
  7. Boucher, J. M., et al. Rab27a regulates human perivascular adipose progenitor cell differentiation. Cardiovascular Drugs and Therapy. 32 (5), 519-530 (2018).
  8. Saxton, S. N., Withers, S. B., Heagerty, A. M. Emerging roles of sympathetic nerves and inflammation in perivascular adipose tissue. Cardiovascular Drugs and Therapy. 33 (2), 245-259 (2019).
  9. Ferroni, L., De Francesco, F., Pinton, P., Gardin, C., Zavan, B. Methods to isolate adipose tissue-derived stem cells. Methods in Cell Biology. 171, 215-228 (2022).
  10. Senesi, L., et al. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminary results. Frontiers in Cell and Developmental Biology. 7, 88 (2019).
  11. Andia, I., Maffulli, N., Burgos-Alonso, N. Stromal vascular fraction technologies and clinical applications. Expert Opinion on Biological Therapy. 19 (12), 1289-1305 (2019).
  12. Suh, A., et al. Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation. Ageing Research Reviews. 54, 100933 (2019).
  13. Bellei, B., Migliano, E., Picardo, M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Experimental Dermatology. 31 (12), 1837-1852 (2022).
  14. Kraus, N. A., et al. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte. 5 (4), 351-358 (2016).
  15. Figueroa, A. M., Stolzenbach, F., Tapia, P., Cortés, V. Differentiation and imaging of brown adipocytes from the stromal vascular fraction of interscapular adipose tissue from newborn mice. Journal of Visualized Experiments: JoVE. (192), (2023).
  16. Ma, Y., et al. Methotrexate improves perivascular adipose tissue/endothelial dysfunction via activation of AMPK/eNOS pathway. Molecular Medicine Reports. 15 (4), 2353-2359 (2017).
  17. Li, X., Ballantyne, L. L., Yu, Y., Funk, C. D. Perivascular adipose tissue-derived extracellular vesicle miR-221-3p mediates vascular remodeling. FASEB Journal. 33 (11), 12704-12722 (2019).
  18. Ruan, C. C., et al. Perivascular adipose tissue-derived complement 3 is required for adventitial fibroblast functions and adventitial remodeling in deoxycorticosterone acetate-salt hypertensive rats. Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (12), 2568-2574 (2010).
  19. Adachi, Y., et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling. Nature Communications. 13 (1), 5117 (2022).
  20. Ye, M., et al. Developmental and functional characteristics of the thoracic aorta perivascular adipocyte. Cellular and Molecular Life Sciences. 76 (4), 777-789 (2019).
  21. Stanek, A., Brożyna-Tkaczyk, K., Myśliński, W. The role of obesity-induced perivascular adipose tissue (PVAT) dysfunction in vascular homeostasis. Nutrients. 13 (11), 3843 (2021).
  22. Queiroz, M., Sena, C. M. Perivascular adipose tissue in age-related vascular disease. Ageing Research Reviews. 59, 101040 (2020).
  23. Fitzgibbons, T. P., et al. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. American Journal of Physiology-Heart and Circulatory Physiology. 301 (4), H1425-H1437 (2011).
  24. Chang, L., et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 126 (9), 1067-1078 (2012).
  25. Piacentini, L., et al. Genome-wide expression profiling unveils autoimmune response signatures in the perivascular adipose tissue of abdominal aortic aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (2), 237-249 (2019).
  26. Wang, Z., et al. RNA sequencing reveals perivascular adipose tissue plasticity in response to angiotensin II. Pharmacological Research. 178, 106183 (2022).
  27. Shi, K., et al. Ascending aortic perivascular adipose tissue inflammation associates with aortic valve disease. Journal of Cardiology. 80 (3), 240-248 (2022).
  28. Fu, M., et al. Neural crest cells differentiate into brown adipocytes and contribute to periaortic arch adipose tissue formation. Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (8), 1629-1644 (2019).
  29. Gil-Ortega, M., Somoza, B., Huang, Y., Gollasch, M., Fernández-Alfonso, M. S. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends in Endocrinology & Metabolism. 26 (7), 367-375 (2015).
  30. Bar, A., et al. In vivo magnetic resonance imaging-based detection of heterogeneous endothelial response in thoracic and abdominal aorta to short-term high-fat diet ascribed to differences in perivascular adipose tissue in mice. Journal of the American Heart Association. 9 (21), e016929 (2020).
check_url/65703?article_type=t

Play Video

Cite This Article
Liang, M., Huang, Y., Jiang, Y., Hu, Y., Cai, Z., He, B. Isolation, Culture, and Adipogenic Induction of Stromal Vascular Fraction-derived Preadipocytes from Mouse Periaortic Adipose Tissue. J. Vis. Exp. (197), e65703, doi:10.3791/65703 (2023).

View Video