Summary

从小鼠主动脉周围脂肪组织中分离、培养和诱导基质血管部分来源的前脂肪细胞

Published: July 21, 2023
doi:

Summary

在这里,我们描述了从小鼠主动脉周围脂肪组织中分离、培养和诱导基质血管部分来源的前脂肪细胞,从而可以研究血管周围脂肪组织功能及其与血管细胞的关系。

Abstract

血管周围脂肪组织 (PVAT) 是一种围绕血管的脂肪组织库,表现出白色、米色和棕色脂肪细胞的表型。最近的发现揭示了PVAT在调节血管稳态和参与心血管疾病发病机制中的核心作用。全面了解PVAT特性和调控对于未来疗法的开发非常重要。主动脉周围脂肪细胞的原代培养对于研究PVAT功能以及主动脉周围脂肪细胞与血管细胞之间的串扰很有价值。本文提出了一种经济可行的方案,用于从小鼠主动脉周围脂肪组织中分离、培养和诱导基质血管部分来源的前脂肪细胞,可用于 体外模拟脂肪生成或脂肪生成。该方案概述了用于培养年轻小鼠主动脉周围脂肪细胞的组织处理和细胞分化。该协议将为研究PVAT功能提供工作台侧的技术基石。

Introduction

血管周围脂肪组织 (PVAT) 是一种由成熟脂肪细胞和基质血管部分 (SVF) 混合物组成的血管周围结构,被认为通过其分泌组旁分泌与相邻血管壁相互作用1。作为血管稳态的关键调节因子,PVAT 功能障碍与心血管疾病的发病机制有关 2,3,4脂肪细胞组织的 SVF 由几个预期的细胞群组成,包括内皮细胞、免疫细胞、间皮细胞、神经元细胞以及脂肪干细胞和祖细胞 (ASPC)5,6。众所周知,存在于脂肪组织SVF中的ASPC可以产生成熟的脂肪细胞5。SVF 被推断为 PVAT 中成熟脂肪细胞的关键来源。多项研究表明,PVAT-SVF 可以在特定的诱导条件下分化为成熟的脂肪细胞 6,7,8

目前,从脂肪组织中分离SVF有两种分离系统,一种是酶消化,另一种是非酶9。酶法通常可提高有核祖细胞的产量10。迄今为止,SVF 在促进伤口愈合、泌尿生殖系统和心血管疾病中的血管再生和新生血管形成方面的益处已得到广泛证明11,尤其是在皮肤病学和整形外科领域12,13。然而,PVAT衍生SVF的临床应用前景尚未得到很好的探索,这可能是由于缺乏标准化的SVF与PVAT分离方法。该协议的目的是建立一种标准化方法,用于从胸主动脉周围的小鼠PVAT中分离,培养和脂肪生成诱导SVF衍生的前脂肪细胞,从而能够进一步研究PVAT功能。该方案优化了组织加工和细胞分化技术,用于培养从年轻小鼠获得的主动脉周围脂肪细胞。

Protocol

动物用药方案经上海交通大学医学院附属上海胸科医院机构动物护理与使用委员会批准(批准文号:KS23010),符合相关伦理规范。4-8周龄的雄性和雌性C57BL / 6小鼠是该实验的首选。 1. 手术工具、缓冲液和培养基的制备 将手术工具(例如手术剪刀和标准镊子)在121°C高压灭菌30分钟。用75%酒精对显微外科器械进行消毒。 制备补充有 1% v/v 青霉素 – 链…

Representative Results

使用上述方案,我们仔细分离小鼠胸主动脉周围的PVAT(图1A-D)。使用无菌剪刀将PVAT洗涤并切碎成小块(图1E,F)后,将组织碎片在含有1型胶原酶(1mg / mL)和分散酶II(4mg / mL)的消化溶液中消化,并在37°C下在振荡器上孵育30-45分钟(图1G)。将消化的组织通过70μm细胞过滤器过滤到50mL离心…

Discussion

我们提出了一种实用可行的方法,用于从小鼠主动脉周围脂肪组织中分离和诱导SVF来源的前脂肪细胞。该协议的优点是简单且经济。足够数量的小鼠对于成功分离至关重要,因为组织不足会导致 SVF 密度低和生长状态不佳,最终影响脂肪生成效率。此外,小鼠年龄是一个需要考虑的重要因素,因为SVF的成脂潜力随着年龄的增长而降低。快速、仔细地分离PVAT,同时最大限度地减少脉管系统的污染至?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(82130012和81830010)和上海市胸科医院基础研究培育项目(批准号:2022YNJCQ03)的支持。

Materials

0.2 μm syringe filters PALL 4612
12-well plate  Labselect 11210
15 mL centrifuge tube Labserv 310109003
3,3',5-triiodo-L-thyronine (T3) Sigma-Aldrich T-2877 1 nM
50 mL centrifuge tube Labselect CT-002-50A
anti-adiponectin Abcam ab22554 1:1,000 working concentration
anti-COX IV CST 4850 1:1,000 working concentration
anti-FABP4 CST 2120 1:1,000 working concentration
anti-PGC1α Abcam ab191838 1:1,000 working concentration
anti-PPARγ Invitrogen MA5-14889 1:1,000 working concentration
anti-UCP1 Abcam ab10983 1:1,000 working concentration
anti-α-Actinin CST 6487 1:1,000 working concentration
BSA Beyotime ST023-200g 1%
C57BL/6 mice aged 4-8 weeks of both sexes Shanghai Model Organisms Center, Inc.
Cell Strainer 70 µm, nylon Falcon 352350
Collagen from calf skin Sigma-Aldrich C8919
Collagenase, Type 1 Worthington LS004196 1 mg/mL
Dexamethasone Sigma-Aldrich D1756 1 μM
Dispase II Sigma-Aldrich D4693-1G 4 mg/mL
Fetal bovine serum  Gibco 16000-044 10%
HEPES Sigma-Aldrich H4034-25G 20 mM
High glucose DMEM Hyclone SH30022.01
IBMX  Sigma-Aldrich I7018 0.5 mM
Incubator with orbital shaker Shanghai longyue Instrument Eruipment Co.,Ltd. LYZ-103B
Insulin (cattle)  Sigma-Aldrich 11070-73-8 1 μM
Isoflurane RWD R510-22-10
Krebs-Ringer's Solution Pricella  PB180347 protect from light 
Microsurgical forceps Beyotime FS233
Microsurgical scissor Beyotime FS217
Oil Red O  Sangon Biotech (Shanghai) Co., Ltd A600395-0050
PBS (Phosphate-buffered saline) Sangon Biotech (Shanghai) Co., Ltd B548117-0500
Penicillin-Streptomycin Gibco 15140122
Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) Jackson ImmunoResearch  115-035-146 1:5,000 working concentration
Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) Jackson ImmunoResearch  111-035-144 1:5,000 working concentration
Rosiglitazone Sigma-Aldrich R2408 1 μM
Standard forceps Beyotime FS225
Surgical scissor Beyotime FS001

References

  1. Akoumianakis, I., Antoniades, C. The interplay between adipose tissue and the cardiovascular system: is fat always bad. Cardiovascular Research. 113 (9), 999-1008 (2017).
  2. Huang, C. L., et al. Thoracic perivascular adipose tissue inhibits VSMC apoptosis and aortic aneurysm formation in mice via the secretome of browning adipocytes. Acta Pharmacologica Sinica. 44 (2), 345-355 (2023).
  3. Xia, N., Li, H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. British Journal of Pharmacology. 174 (20), 3425-3442 (2017).
  4. Brown, N. K., et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arteriosclerosis, Thrombosis, and Vascular Biology. 34 (8), 1621-1630 (2014).
  5. Ferrero, R., Rainer, P., Deplancke, B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends in Cell Biology. 30 (12), 937-950 (2020).
  6. Angueira, A. R., et al. Defining the lineage of thermogenic perivascular adipose tissue. Nature Metabolism. 3 (4), 469-484 (2021).
  7. Boucher, J. M., et al. Rab27a regulates human perivascular adipose progenitor cell differentiation. Cardiovascular Drugs and Therapy. 32 (5), 519-530 (2018).
  8. Saxton, S. N., Withers, S. B., Heagerty, A. M. Emerging roles of sympathetic nerves and inflammation in perivascular adipose tissue. Cardiovascular Drugs and Therapy. 33 (2), 245-259 (2019).
  9. Ferroni, L., De Francesco, F., Pinton, P., Gardin, C., Zavan, B. Methods to isolate adipose tissue-derived stem cells. Methods in Cell Biology. 171, 215-228 (2022).
  10. Senesi, L., et al. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminary results. Frontiers in Cell and Developmental Biology. 7, 88 (2019).
  11. Andia, I., Maffulli, N., Burgos-Alonso, N. Stromal vascular fraction technologies and clinical applications. Expert Opinion on Biological Therapy. 19 (12), 1289-1305 (2019).
  12. Suh, A., et al. Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation. Ageing Research Reviews. 54, 100933 (2019).
  13. Bellei, B., Migliano, E., Picardo, M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Experimental Dermatology. 31 (12), 1837-1852 (2022).
  14. Kraus, N. A., et al. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte. 5 (4), 351-358 (2016).
  15. Figueroa, A. M., Stolzenbach, F., Tapia, P., Cortés, V. Differentiation and imaging of brown adipocytes from the stromal vascular fraction of interscapular adipose tissue from newborn mice. Journal of Visualized Experiments: JoVE. (192), (2023).
  16. Ma, Y., et al. Methotrexate improves perivascular adipose tissue/endothelial dysfunction via activation of AMPK/eNOS pathway. Molecular Medicine Reports. 15 (4), 2353-2359 (2017).
  17. Li, X., Ballantyne, L. L., Yu, Y., Funk, C. D. Perivascular adipose tissue-derived extracellular vesicle miR-221-3p mediates vascular remodeling. FASEB Journal. 33 (11), 12704-12722 (2019).
  18. Ruan, C. C., et al. Perivascular adipose tissue-derived complement 3 is required for adventitial fibroblast functions and adventitial remodeling in deoxycorticosterone acetate-salt hypertensive rats. Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (12), 2568-2574 (2010).
  19. Adachi, Y., et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling. Nature Communications. 13 (1), 5117 (2022).
  20. Ye, M., et al. Developmental and functional characteristics of the thoracic aorta perivascular adipocyte. Cellular and Molecular Life Sciences. 76 (4), 777-789 (2019).
  21. Stanek, A., Brożyna-Tkaczyk, K., Myśliński, W. The role of obesity-induced perivascular adipose tissue (PVAT) dysfunction in vascular homeostasis. Nutrients. 13 (11), 3843 (2021).
  22. Queiroz, M., Sena, C. M. Perivascular adipose tissue in age-related vascular disease. Ageing Research Reviews. 59, 101040 (2020).
  23. Fitzgibbons, T. P., et al. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. American Journal of Physiology-Heart and Circulatory Physiology. 301 (4), H1425-H1437 (2011).
  24. Chang, L., et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 126 (9), 1067-1078 (2012).
  25. Piacentini, L., et al. Genome-wide expression profiling unveils autoimmune response signatures in the perivascular adipose tissue of abdominal aortic aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (2), 237-249 (2019).
  26. Wang, Z., et al. RNA sequencing reveals perivascular adipose tissue plasticity in response to angiotensin II. Pharmacological Research. 178, 106183 (2022).
  27. Shi, K., et al. Ascending aortic perivascular adipose tissue inflammation associates with aortic valve disease. Journal of Cardiology. 80 (3), 240-248 (2022).
  28. Fu, M., et al. Neural crest cells differentiate into brown adipocytes and contribute to periaortic arch adipose tissue formation. Arteriosclerosis, Thrombosis, and Vascular Biology. 39 (8), 1629-1644 (2019).
  29. Gil-Ortega, M., Somoza, B., Huang, Y., Gollasch, M., Fernández-Alfonso, M. S. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends in Endocrinology & Metabolism. 26 (7), 367-375 (2015).
  30. Bar, A., et al. In vivo magnetic resonance imaging-based detection of heterogeneous endothelial response in thoracic and abdominal aorta to short-term high-fat diet ascribed to differences in perivascular adipose tissue in mice. Journal of the American Heart Association. 9 (21), e016929 (2020).

Play Video

Cite This Article
Liang, M., Huang, Y., Jiang, Y., Hu, Y., Cai, Z., He, B. Isolation, Culture, and Adipogenic Induction of Stromal Vascular Fraction-derived Preadipocytes from Mouse Periaortic Adipose Tissue. J. Vis. Exp. (197), e65703, doi:10.3791/65703 (2023).

View Video