Summary

Kokuların Kortikospinal Uyarılabilirlik ve Etkili Bağlantı Üzerindeki Etkisini İncelemek için Nefesle Senkronize Olfaktometreyi Beyin Simülasyonu ile Birleştirmek

Published: January 19, 2024
doi:

Summary

Bu makale, insan burun solunumuyla senkronize koku sunumu sırasında tek ve çift bobinli transkraniyal manyetik stimülasyonu (TMS) tetiklemek için nefesle senkronize bir olfaktometre kullanmayı açıklamaktadır. Bu kombinasyon, hoş ve hoş olmayan kokuların belirli bir bireyde kortikospinal uyarılabilirliği ve beyin etkili bağlantıyı nasıl etkilediğini objektif olarak araştırmamızı sağlar.

Abstract

Koku stimülasyonunun, hayvanlarda ve insanlarda hoş koku verici maddelere yaklaşmak ve hoş olmayanlardan kaçınmak gibi motor davranışları ortaya çıkardığı yaygın olarak kabul edilmektedir. Son zamanlarda, elektroensefalografi ve transkraniyal manyetik stimülasyon (TMS) kullanan çalışmalar, insanlarda koku alma sistemindeki işleme ile motor korteksteki aktivite arasında güçlü bir bağlantı olduğunu göstermiştir. Koku alma ve motor sistemler arasındaki etkileşimleri daha iyi anlamak ve önceki metodolojik sınırlamaların bazılarının üstesinden gelmek için, farklı hedonik değerlere sahip koku maddelerinin rastgele sıralı sunumunu senkronize eden bir olfaktometreyi ve TMS’yi (tek ve çift bobin) nazal solunum fazları ile tetiklemeyi birleştiren yeni bir yöntem geliştirdik. Bu yöntem, hoş ve hoş olmayan koku algısı sırasında ortaya çıkabilecek kortikospinal uyarılabilirlik modülasyonlarının ve dorsolateral prefrontal korteks ile birincil motor korteks arasında etkili ipsilateral bağlantının araştırılmasına izin verir. Bu yöntemin uygulanması, belirli bir katılımcıda bir koku maddesinin hoşluk değerinin objektif olarak ayırt edilmesine izin verecek ve koku maddesinin beynin etkili bağlantısı ve uyarılabilirliği üzerindeki biyolojik etkisini gösterecektir. Ayrıca bu, koku hedonik değişiklikleri ve uyumsuz yaklaşım-kaçınma davranışları sergileyebilen nörolojik veya nöropsikiyatrik bozukluğu olan hastalarda klinik araştırmaların önünü açabilir.

Introduction

Koku stimülasyonunun otomatik reaksiyonları ve motor davranışları ortaya çıkardığı yaygın olarak kabul edilmektedir. Örneğin, insanlarda, negatif koku başlangıcından 500 ms sonra meydana gelen bir kaçınma motor tepkisinin (koku kaynağından uzaklaşma) varlığı yakın zamanda gösterilmiştir1. Chalençon ve ark. (2022), şişelerden yayılan kokuları keşfeden serbestçe hareket eden insan katılımcıları kaydederek, motor davranışların (yani, buruna yaklaşma hızı ve koku maddesini içeren şişenin geri çekilmesi) koku hedoniği2 ile yakından bağlantılı olduğunu gösterdi. Ayrıca, koku alma sistemindeki işleme ile motor korteksteki aktivite arasında yakın bir ilişki yakın zamanda insanlarda elektroensefalografi1 kullanılarak gösterilmiştir. Spesifik olarak, negatif kokuların başlamasından yaklaşık 350 ms sonra, birincil motor korteks (M1) üzerinde ve içinde eylem hazırlama süreçlerini yansıttığı bilinen spesifik bir mu ritmi senkronizasyonu gözlendi ve kısa bir süre sonra davranışsal bir geriye doğru hareket1 izledi. Koku alma ve motor sistemler arasındaki ilişki fikrini güçlendiren yakın tarihli bir başka çalışma, hoş bir koku maddesine maruz kalmanın, kokusuz bir duruma kıyasla kortikospinal uyarılabilirliği artırdığını göstermiştir3. Bu çalışmada, koku algısı sırasında elektromiyografi (EMG) ile periferik olarak kaydedilen bir hedef el kasında motor uyarılmış bir potansiyeli (MEP) uyandırmak için M1’e tek atımlı transkraniyal manyetik stimülasyon (spTMS) uygulandı. Hoş koku maddesine maruz kalma, saf bergamot esansiyel yağı ile ıslatılmış ve burnun altındaki metal bir tutucuya yerleştirilmiş kağıt şeritler tarafından pasif olarak sağlandı3. Bu bağlamda, kortikospinal uyarılabilirliğin kolaylaştırılmasının hoş koku uyarımından mı yoksa koklama ve diş sıkmagibi spesifik olmayan davranışsal etkilerden mi kaynaklandığı belirsizliğini korumaktadır 4,5. Ayrıca, hoş olmayan bir koku maddesinin TMS tarafından araştırılan M1 uyarılabilirliğini nasıl modüle ettiği hala bilinmemektedir.

Özetle, bu, önceki çalışmalarda kullanılan mevcut tekniklere göre aşağıdaki avantajları sunan bir yöntem geliştirme ihtiyacını vurgulamaktadır 3,6: (1) aynı deney aşamasında farklı koku koşullarının (hoş / hoş olmayan / kokusuz) sunumunu randomize etmek, (2) motor sistemi incelerken insan burun solunum fazlarına (inspirasyon ve ekspirasyon) göre koku verici sunumunu ve TMS zamanlamasını tam olarak senkronize etmek.

TMS ayrıca, yüksek zamansal çözünürlüğesahip çoklu kortikal alanlar ve M1 arasındaki etkili bağlantı olarak da adlandırılan kortiko-kortikal etkileşimleri araştırmak için bir araç olarak kullanılabilir 7,8,9,10,11,12. Burada, bir birinci koşullandırma stimülasyonunun (CS) bir hedef kortikal alanı aktive ettiği ve bir MEP’yi uyandırmak için başka bir bobin kullanılarak M1 üzerine ikinci bir test stimülasyonunun (TS) uygulandığı çift bölgeli bir TMS (dsTMS) paradigması kullanıyoruz. CS’nin etkisi, koşullandırılmış MEP’in genliğinin (dsTMS koşulu) koşulsuz MEP’in (spTMS koşulu) genliğine normalleştirilmesiyle değerlendirilir13. Daha sonra, negatif oran değerleri baskılayıcı kortiko-kortikal etkileşimleri gösterirken, pozitif oran değerleri, uyarılan iki alan arasındaki kolaylaştırıcı kortiko-kortikal etkileşimleri gösterir. Bu nedenle dsTMS paradigması, önceden etkinleştirilmiş alan ile M1 arasındaki etkili bağlantının doğasını (yani kolaylaştırıcı veya baskılayıcı), gücünü ve modülasyonlarını tanımlamak için eşsiz bir fırsat sağlar. Daha da önemlisi, kortiko-kortikal etkileşimler, farklı zamanlama ve zihinsel durumlarda veya görevlerde modüle edilebilen karmaşık bir kolaylaştırma ve bastırma dengesini yansıtır 7,14.

Bildiğimiz kadarıyla, nispeten yeni dsTMS paradigması, farklı hedonik değerlerle koku algısı sırasında kortiko-kortikal etkileşimleri araştırmak için hiç kullanılmamıştır. Bununla birlikte, nörogörüntüleme çalışmaları, hoş ve hoş olmayan koku maddelerine maruz kalmanın, ek motor alan, ön singulat korteks ve dorsolateral prefrontal korteks (DLPFC) dahil olmak üzere duygu, karar verme ve eylem kontrolü ile ilgili alanlarda bağlantı değişikliklerine neden olduğunu göstermiştir15,16. Gerçekten de, DLPFC, duygusal kontrole, duyusal işlemeye ve hazırlık süreçleri 17,18,19 gibi motor kontrolün daha üst düzey yönlerine aracılık eden önemli bir düğümdür. Ek olarak, hem insan hem de hayvan çalışmaları, DLPFC’nin M1 17,18,20,21,22’ye çeşitli nöronal projeksiyonlara sahip olduğuna dair kanıtlar sağlamıştır. Bağlama bağlı olarak, bu DLPFC projeksiyonları M1 aktivitesinikolaylaştırabilir veya engelleyebilir 7,19,20. Bu nedenle, DLPFC ve M1 arasındaki etkili bağlantının koku sunumu sırasında modüle edilmesi ve hoş ve hoş olmayan koku maddelerinin ayrı kortikal ağları işe alması ve DLPFC-M1 bağlantısı üzerinde farklı bir etkiye yol açması mümkün görünmektedir.

Burada, tümü insan burun solunumu ile senkronize olarak iletilen, hoş ve hoş olmayan kokuların algılanması sırasında ortaya çıkabilecek kortikospinal uyarılabilirlik ve etkili bağlantı modülasyonlarının metodolojik olarak titiz bir şekilde incelenmesi için uygun yeni bir yöntem öneriyoruz.

Protocol

Aşağıdaki bölümlerde açıklanan tüm deneysel prosedürler, Helsinki Bildirgesi’ne uygun olarak bir Etik Kurul (CPP Ile de France VII, Paris, Fransa, protokol numarası 2022-A01967-36) tarafından onaylanmıştır. Tüm katılımcılar, çalışmaya kaydolmadan önce yazılı bilgilendirilmiş onam verdiler. 1. Katılımcı alımı Dahil etme/hariç tutma kriterleri.Yetişkin (> 18 yaş) katılımcıları dahil edin. Tüm katılımcıları TMS’ye herhan…

Representative Results

Burada sunulan temsili veriler, ne bekleyebileceğimize dair bir ön fikir sağlamak için yukarıdaki adım adım protokolü tamamladıktan sonra katılımcılardan gelen kayıtları yansıtmaktadır. Şekil 2, temsili bir katılımcının olfaktometre yazılımıyla kaydedilen solunum sinyallerinin bir örneğini göstermektedir. Ekspiratuar ve inspiratuar fazlar, eşikler aşıldığında iyi tespit edilir. Koku verici, son kullanma fazı eşiğinden hemen sonr…

Discussion

Yukarıdaki protokol, koku vericilerin hedonik değerine bağlı olarak kortikospinal uyarılabilirlik ve etkili bağlantıdaki değişiklikleri araştırmak için nefesle senkronize olfaktometrenin kullanımını tek ve çift bobinli TMS ile birleştiren yeni bir yöntemi açıklamaktadır. Bu kurulum, belirli bir katılımcıda bir koku maddesinin hoşluk değerini objektif olarak ayırt etmeye izin verecek ve koku maddesinin beyin etkili bağlantı ve reaktivite üzerindeki biyolojik etkisini gösterecektir. Bu protok…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Bu çalışma, Fondation de France, Grant N°: 00123049/WB-2021-35902 (J.B. ve N.M. tarafından alınan bir hibe) tarafından desteklenmiştir. Yazarlar, desteği için Fondation Pierre Deniker’e (CN tarafından alınan hibe) ve kurulumun tasarlanmasındaki değerli yardımları için Neuro-Immersion platformunun personeline teşekkür eder.

Materials

Acquisition board (8 channels)  National Instrument NI USB-6009 
Air compressor Jun-Air  Model6-15
Alcohol prep pads Any
Butyric acid Sigma-Aldrich B103500 Negative odorant
Desktop computer Dell Latitude 3520
EMG system Biopac System MP150
Isoamyl acetate Sigma-Aldrich W205508 Positive odorant
Nasal cannula SEBAC France O1320
Programmable pulse generator A.M.P.I  Master-8
Surface electrodes Kendall Medi-trace FS327
TMS coil (X2) MagStim D40 Alpha B.I. coil 
TMS machine MagStim Bistim2
Tube 6 mm x 20 m Radiospare 686-2671 Pneumatic connection
USB-RS232 Radiospare 687-7806
U-shaped tubes VS technologies VS110115

References

  1. Iravani, B., Schaefer, M., Wilson, D. A., Arshamian, A., Lundström, J. N. The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proceedings of the National Academy of Sciences. 118 (42), e2101209118 (2021).
  2. Chalençon, L., Thevenet, M., Noury, N., Bensafi, M., Mandairon, N. Identification of new behavioral parameters to assess odorant hedonic value in humans: A naturalistic approach. Journal of Neuroscience Methods. 366, 109422 (2022).
  3. Infortuna, C., et al. Motor cortex response to pleasant odor perception and imagery: The differential role of personality dimensions and imagery ability. Frontiers in Human Neuroscience. 16, 943469 (2022).
  4. Ozaki, I., Kurata, K. The effects of voluntary control of respiration on the excitability of the primary motor hand area, evaluated by end-tidal CO2 monitoring. Clinical Neurophysiology. 126 (11), 2162-2169 (2015).
  5. Boroojerdi, B., Battaglia, F., Muellbacher, W., Cohen, L. G. Voluntary teeth clenching facilitates human motor system excitability. Clinical Neurophysiology. 111 (6), 988-993 (2000).
  6. Rossi, S., et al. Distinct olfactory cross-modal effects on the human motor system. PLOS One. 3 (2), e1702 (2008).
  7. Neige, C., Rannaud Monany, D., Lebon, F. Exploring cortico-cortical interactions during action preparation by means of dual-coil transcranial magnetic stimulation: A systematic review. Neuroscience and Biobehavioral Reviews. 128 (October 2020), 678-692 (2020).
  8. Koch, G. Cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications. Experimental Brain Research. 238 (7-8), 1677-1684 (2020).
  9. Derosiere, G., Vassiliadis, P., Duque, J. Advanced TMS approaches to probe corticospinal excitability during action preparation. NeuroImage. 213 (November 2019), 116746 (2020).
  10. Goldenkoff, E. R., Mashni, A., Michon, K. J., Lavis, H., Vesia, M. Measuring and manipulating functionally specific neural pathways in the human motor system with transcranial magnetic stimulation. Journal of Visualized Experiments JoVE. 156, 60706 (2020).
  11. Malderen, S. V., Hehl, M., Verstraelen, S., Swinnen, S. P., Cuypers, K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Reviews in the Neurosciences. 34 (2), 129-221 (2023).
  12. Neige, C., et al. Connecting the dots: Harnessing dual-site transcranial magnetic stimulation to assess the causal influence of medial frontal areas on the motor cortex. Cerebral Cortex. , bhad370 (2023).
  13. Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G., Marsden, C. D. Interhemispheric inhibition of the human motor cortex. The Journal of physiology. 453, 525-546 (1992).
  14. Rothwell, J. C. Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Human Movement Science. 30 (5), 906-915 (2011).
  15. Carlson, H., Leitão, J., Delplanque, S., Cayeux, I., Sander, D., Vuilleumier, P. Sustained effects of pleasant and unpleasant smells on resting state brain activity. Cortex. 132, 386-403 (2020).
  16. Farruggia, M. C., Pellegrino, R., Scheinost, D. Functional connectivity of the chemosenses: A review. Frontiers in Systems Neuroscience. 16, 865929 (2022).
  17. Hasan, A., Galea, J. M., Casula, E. P., Falkai, P., Bestmann, S., Rothwell, J. C. Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. Journal of Cognitive Neuroscience. 25 (4), 558-570 (2013).
  18. Brown, M. J. N., Goldenkoff, E. R., Chen, R., Gunraj, C., Vesia, M. Using dual-site transcranial magnetic stimulation to probe connectivity between the dorsolateral prefrontal cortex and ipsilateral primary motor cortex in humans. Brain Sciences. 9 (8), 177 (2019).
  19. Xia, X., et al. Connectivity from ipsilateral and contralateral dorsolateral prefrontal cortex to the active primary motor cortex during approaching-avoiding behavior. Cortex. 157, 155-166 (2022).
  20. Wang, Y., Cao, N., Lin, Y., Chen, R., Zhang, J. Hemispheric differences in functional interactions between the dorsal lateral prefrontal cortex and ipsilateral motor cortex. Frontiers in Human Neuroscience. 14, 1-6 (2020).
  21. Gabbott, P. L. A., Warner, T. A., Jays, P. R. L., Salway, P., Busby, S. J. Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. Journal of Comparative Neurology. 492 (2), 145-177 (2005).
  22. Yeterian, E. H., Pandya, D. N., Tomaiuolo, F., Petrides, M. The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex. 48 (1), 58-81 (2012).
  23. Rossi, S., et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert guidelines. Clinical Neurophysiology. 132 (1), 269-306 (2021).
  24. Joussain, P., et al. Application of the European Test of Olfactory Capabilities in patients with olfactory impairment. European Archives of Oto-Rhino-Laryngology. 273 (2), 381-390 (2016).
  25. Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 9 (1), 97-113 (1971).
  26. Daligadu, J., Haavik, H., Yielder, P. C., Baarbe, J., Murphy, B. Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. Journal of Manipulative and Physiological Therapeutics. 36 (8), 527-537 (2013).
  27. Andersen, K. W., Siebner, H. R. Mapping dexterity and handedness: recent insights and future challenges. Current Opinion in Behavioral Sciences. 20, 123-129 (2018).
  28. Fried, P. J., et al. Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee. Clinical Neurophysiology. 132 (3), 819-837 (2021).
  29. Mills, K. R., Boniface, S. J., Schubert, M. Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalography and Clinical Neurophysiology. 85 (1), 17-21 (1992).
  30. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology. 126 (6), 1071-1107 (2015).
  31. Awiszus, F. TMS and threshold hunting. Supplements to Clinical Neurophysiology. 56, 13-23 (2003).
  32. Awiszus, F. Using relative frequency estimation of transcranial magnetic stimulation motor threshold does not allow to draw any conclusions about true threshold. Clinical Neurophysiology. 125 (6), 1285-1286 (2014).
  33. Ah Sen, C. B., Fassett, H. J., El-Sayes, J., Turco, C. V., Hameer, M. M., Nelson, A. J. Active and resting motor threshold are efficiently obtained with adaptive threshold hunting. PLoS One. 12 (10), 1-9 (2017).
  34. Neige, C., Rannaud Monany, D., Stinear, C. M., Byblow, W. D., Papaxanthis, C., Lebon, F. Unravelling the modulation of intracortical inhibition during motor imagery: An adaptive threshold-hunting study. Neuroscience. 434, 102-110 (2020).
  35. Burke, D., Pierrot-Deseilligny, E. Caveats when studying motor cortex excitability and the cortical control of movement using transcranial magnetic stimulation. Clinical Neurophysiology. 121 (2), 121-123 (2010).
  36. Mir-Moghtadaei, A., et al. Updated scalp heuristics for localizing the dorsolateral prefrontal cortex based on convergent evidence of lesion and brain stimulation studies in depression. Brain Stimulation. 15 (2), 291-295 (2022).
  37. Siddiqi, S. H., et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nature Human Behaviour. 5 (12), 1707-1716 (2021).
  38. Caulfield, K. A., Fleischmann, H. H., Cox, C. E., Wolf, J. P., George, M. S., McTeague, L. M. Neuronavigation maximizes accuracy and precision in TMS positioning: Evidence from 11,230 distance, angle, and electric field modeling measurements. Brain Stimulation. 15 (5), 1192-1205 (2022).
  39. Cao, N., et al. Plasticity changes in dorsolateral prefrontal cortex associated with procedural sequence learning are hemisphere-specific. NeuroImage. 259, 119406 (2022).
  40. Brown, M. J. N., et al. Somatosensory-motor cortex interactions measured using dual-site transcranial magnetic stimulation. Brain Stimulation. 12 (5), 1229-1243 (2019).
  41. Fiori, F., Chiappini, E., Candidi, M., Romei, V., Borgomaneri, S., Avenanti, A. Long-latency interhemispheric interactions between motor-related areas and the primary motor cortex: a dual site TMS study. Scientific reports. 7 (1), 14936 (2017).
  42. Fournel, A., Ferdenzi, C., Sezille, C., Rouby, C., Bensafi, M. Multidimensional representation of odors in the human olfactory cortex. Human Brain Mapping. 37 (6), 2161-2172 (2016).
  43. Midroit, M., et al. Neural processing of the reward value of pleasant odorants. Current Biology. 31 (8), 1592-1605.e9 (2021).
  44. Sezille, C., Messaoudi, B., Bertrand, A., Joussain, P., Thévenet, M., Bensafi, M. A portable experimental apparatus for human olfactory fMRI experiments. Journal of Neuroscience Methods. 218 (1), 29-38 (2013).
  45. Kato, M., et al. Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding. Proceedings of the National Academy of Sciences. 119 (21), e2114966119 (2022).
  46. Jackson, N., Greenhouse, I. VETA: An open-source Matlab-based toolbox for the collection and analysis of electromyography combined with transcranial magnetic stimulation. Frontiers in Neuroscience. 13, 975 (2019).
  47. Cunningham, D., Zhang, B., Cahn, A. Transcranial magnetic stimulation (TMS) analysis toolbox: A user friendly open source software for basic and advanced analysis and data sharing of TMS related outcomes. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 14 (6), 1641-1642 (2021).
  48. Julkunen, P., Säisänen, L., Hukkanen, T., Danner, N., Könönen, M. Does second-scale intertrial interval affect motor evoked potentials induced by single-pulse transcranial magnetic stimulation. Brain Stimulation. 5 (4), 526-532 (2012).
  49. Pellicciari, M. C., Miniussi, C., Ferrari, C., Koch, G., Bortoletto, M. Ongoing cumulative effects of single tms pulses on corticospinal excitability: An intra- and inter-block investigation. Clinical Neurophysiology. 127 (1), 621-628 (2016).
  50. Li, S., Rymer, W. Z. Voluntary breathing influences corticospinal excitability of nonrespiratory finger muscles. Journal of Neurophysiology. 105 (2), 512-521 (2011).
  51. Boesveldt, S., Frasnelli, J., Gordon, A. R., Lundström, J. N. The fish is bad: Negative food odors elicit faster and more accurate reactions than other odors. Biological Psychology. 84 (2), 313-317 (2010).
  52. Neige, C., Mavromatis, N., Gagné, M., Bouyer, L. J., Mercier, C. Effect of movement-related pain on behaviour and corticospinal excitability changes associated with arm movement preparation. Journal of Physiology. 596 (14), 2917-2929 (2018).
  53. Bergmann, T. O., Hartwigsen, G. Inferring causality from noninvasive brain stimulation in cognitive neuroscience. Journal of Cognitive Neuroscience. 33 (2), 195-225 (2021).
  54. Kulason, S., et al. A comparative neuroimaging perspective of olfaction and higher-order olfactory processing: on health and disease. Seminars in Cell & Developmental Biology. 129, 22-30 (2022).
  55. Athanassi, A., Dorado Doncel, R., Bath, K. G., Mandairon, N. Relationship between depression and olfactory sensory function: a review. Chemical Senses. 46, bjab044 (2021).
  56. Grimm, S., et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: An fmri study in severe major depressive disorder. Biological Psychiatry. 63 (4), 369-376 (2008).
  57. Naudin, M., El-Hage, W., Gomes, M., Gaillard, P., Belzung, C., Atanasova, B. State and trait olfactory markers of major depression. PLOS One. 7 (10), e46938 (2012).
  58. Guidali, G., Roncoroni, C., Bolognini, N. Modulating frontal networks’ timing-dependent-like plasticity with paired associative stimulation protocols: Recent advances and future perspectives. Frontiers in Human Neuroscience. 15, 658723 (2021).
  59. Hernandez-Pavon, J. C., San Agustín, A., Wang, M. C., Veniero, D., Pons, J. L. Can we manipulate brain connectivity? A systematic review of cortico-cortical paired associative stimulation effects. Clinical Neurophysiology. 154, 169-193 (2023).
  60. Deng, Z. -. D., Robins, P. L., Dannhauer, M., Haugen, L. M., Port, J. D., Croarkin, P. E. Optimizing TMS coil placement approaches for targeting the dorsolateral prefrontal cortex in depressed adolescents: An electric field modeling study. Biomedicines. 11 (8), 2320 (2023).
  61. Gomez, L. J., Dannhauer, M., Peterchev, A. V. Fast computational optimization of TMS coil placement for individualized electric field targeting. NeuroImage. 228, 117696 (2021).
  62. Derosiere, G., Duque, J. Tuning the corticospinal system: How distributed brain circuits shape human actions. The Neuroscientist. 26 (4), 359-379 (2020).
  63. Bestmann, S., Krakauer, J. W. The uses and interpretations of the motor-evoked potential for understanding behaviour. Experimental Brain Research. 233 (3), 679-689 (2015).
  64. Reis, J., et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. Journal of Physiology. 586 (2), 325-351 (2008).
check_url/65714?article_type=t

Play Video

Cite This Article
Neige, C., Imbert, L., Dumas, M., Athanassi, A., Thévenet, M., Mandairon, N., Brunelin, J. Combining a Breath-Synchronized Olfactometer with Brain Simulation to Study the Impact of Odors on Corticospinal Excitability and Effective Connectivity. J. Vis. Exp. (203), e65714, doi:10.3791/65714 (2024).

View Video